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Fig. 1. Application of our visualization approach to a multi-parametric FE model of the left ventricle of a human heart. The images
show volumetric renderings of different strain directions defined over the FE model: radial strain, circumferential strain, longitudinal
strain as well as the three former combined (left to right). The presented approach allows for interactive data exploration by changing
the transfer function and other relevant rendering parameters.

Abstract—Finite element (FE) models are frequently used in engineering and life sciences within time-consuming simulations. In
contrast with the regular grid structure facilitated by volumetric data sets, as used in medicine or geosciences, FE models are defined
over a non-uniform grid. Elements can have curved faces and their interior can be defined through high-order basis functions,
which pose additional challenges when visualizing these models. During ray-casting, the uniformly distributed sample points along
each viewing ray must be transformed into the material space defined within each element. The computational complexity of this
transformation makes a straightforward approach inadequate for interactive data exploration. In this paper, we introduce a novel
coherency-based method which supports the interactive exploration of FE models by decoupling the expensive world-to-material
space transformation from the rendering stage, thereby allowing it to be performed within a precomputation stage. Therefore, our
approach computes view-independent proxy rays in material space, which are clustered to facilitate data reduction. During rendering,
these proxy rays are accessed, and it becomes possible to visually analyze high-order FE models at interactive frame rates, even
when they are time-varying or consist of multiple modalities. Within this paper, we provide the necessary background about the FE
data, describe our decoupling method, and introduce our interactive rendering algorithm. Furthermore, we provide visual results and
analyze the error introduced by the presented approach.

Index Terms—Finite element visualization, GPU-based ray-casting.

1 INTRODUCTION

The finite element (FE) method is a computational technique fre-
quently applied in science, medicine, and engineering to solve partial
differential and integral equations [39]. The technique enables the dis-
cretization of complicated domains into arbitrarily shaped elements,
in which material properties can be defined using nodal parameters
together with potentially high-order interpolation functions. Thus,
it becomes possible to incorporate material properties at every point
rather than a limited number of sample points. Applications range
from simulations of physical processes over derivation of new enti-
ties from measured data, for example, computation of material strain
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from displacement data, to analyses and comparisons of data defined
over objects with similar topology. All of these applications involve
large amounts of multi-dimensional and multi-parametric data defined
over arbitrary shaped grid structures. A prominent application exam-
ple from bioengineering, in which FE visualization is essential, is the
strain analysis of the human heart. An understanding of the full 3D
strain tensor, represented by a symmetric matrix at each point, is nec-
essary to identify unusual behavior of the heart muscle’s deformation
and to detect common patterns indicating developing diseases. Since
there is little knowledge available about the exact behavior, interactive
exploration plays an important role in the quest for new discoveries.
By providing immediate visual feedback through rapid image gener-
ation, interactivity enables a rapid response to human input. In our
case, it should be possible to interactively change all relevant visual-
ization parameters, for example, parameter mapping and view orienta-
tion, such that the latency does not hinder the volumetric exploration
process. While interactive surface-based visualizations of FE models
are well established, volumetric visualization techniques supporting
the interactive analysis of the entire structure are rare [35]. This is
largely due to the fact, that accessing the materials defined over high-
order basis functions, which needs to be done for each sample in a
volumetric visualization approach, involves high computational com-
plexity.



Fig. 2. Workflow. To enable interactive ray-casting of curvilinear FE models, we exploit a multi-stage preprocessing approach. In the first step,
we compute representative curved rays in material space, which are represented as splines and transformed in the second step into a common
coordinate system. To reduce the amount of data for the subsequent rendering stage, we apply a rotation invariant curve clustering in the third
step. The resulting data is then passed to the GPU-based rendering stage, where ray marching is performed.

In this paper, we introduce an interactive volumetric ray-casting al-
gorithm for FE models that exploits ray coherency. When ray-casting
FE models, viewing rays are straight lines in world space, but bent
to curves in material (or ξ ) space. Consequently, each sample point
on a straight viewing ray must be transformed during rendering onto
the corresponding curve in material space before the FE data can be
fetched. To avoid this computationally complex transformation, we
exploit ray coherency within a curve clustering approach, and thus pre-
compute a view-independent proxy representation of the curved rays
that can be accessed efficiently during rendering. The workflow of our
approach is shown in Figure 2. In the first step we compute a represen-
tative subset of curved rays in material space, which are represented
by splines. This subset is then reduced through clustering within the
second curve compression step to obtain a lower number of curves,
to which we refer as proxy rays. Assuming that the proxy rays suf-
ficiently represent the coherent curves of a FE model, we can access
them in the third step, the rendering step, where we can omit the ex-
pensive world-to-material space transformation. This allows us to en-
able volumetric FE model visualization of potentially multi-parametric
FE models on modern graphics processing units (GPUs) at interactive
frame rates (see Figure 1). As we achieve this interactivity by ex-
ploiting preprocessing algorithms and data structures accessed during
rendering. The costs of our approach are increased precomputation
times as well as memory consumption, which are discussed in more
detail in Sections 7.3 and 7.4. While our current implementation is
constrained to hexahedral FE models, we will discuss the implications
for other cell types within Section 6.

2 RELATED WORK

Interactive high-quality rendering of FE models, incorporating the in-
terior of the elements, is a demanding task. Often, the elements are
resampled to lie on a common regular uniform grid [35]. While this
enables a direct visualization using standard volume rendering algo-
rithms, it also results in sampling-based errors as well as a loss of
the easy access to element boundaries. As a consequence, many re-
searchers have investigated rendering techniques that enable a more
direct FE visualization by maintaining the relationship between the
world and the material coordinate system.

Wünsche introduced an isosurface-based approach for the visual-
ization of biomedical tensor field data [37], which has been applied
to strain analysis. Another technique for rendering isosurfaces was
presented by Nelson et al. in which they considered spectral high-
order FE meshes and introduced the idea of an error budget [26].
Schroeder et at. developed a framework for isosurface rendering by
tessellating the basis functions into simpler forms which improves the
mesh quality [30]. Meyer et al. chose an approach based on particle
systems to render isosurfaces efficiently [23].

An alternative to the isosurface-based method was presented by
Brasher et al. [4] and Nelson et al. [25], in which cut planes through
the high-order finite element data are evaluated. Rose and Ertl pro-
posed a texture-based mesh reduction approach in order to render sur-

face representations of large FE models at interactive frame rates [29].
Other authors have proposed algorithms which exploit a conversion
into a tetrahedral mesh representation [28, 20, 10] which, in compari-
son with regular grid sampling, allow for adaptivity.

To improve rendering quality ray-casting approaches have been pro-
posed. Garrity was one of the first to introduce ray-casting for render-
ing of unstructured meshes [8]. The technique is suitable for FE mod-
els as it tracks numerous entry and exit points of a ray from the cells
which are stored in a hierarchical data structure. Hong and Kaufman
incorporated the projection approach into ray-casting to speed up the
ray traversal and interpolation [14]. They later improved their method
by employing a projection of the elements’ faces onto the image plane,
which allowed them to compute ray intersection points for the ray
traversal more efficiently [15]. A similar strategy for finding inter-
section points was used by Farias et al., who applied a space sweeping
approach [7]. Grimm et al. performed the intersection point compu-
tation on the GPU [11]. Their hybrid CPU/GPU approach performs a
layer peeling on the GPU while the actual ray-traversal is performed
on the CPU. Martin et al. utilize a special representation of curvilinear
space for transformation between physical space and computational
space using a linear approximation [21].

Moreland and Angel presented a method based on a partial pre-
integration of the volume rendering integral and achieved interactive
frame rates when rendering linear tetrahedral meshes [24]. Wiley et al.
demonstrated a technique to perform ray-casting on quadratic curved
elements, but did so without regard to interactivity [36]. This method
could achieve interactive results on current machines but is limited
to quadratic elements, which simplifies the inversion of the necessary
coordinate transform.

More recently, Üffinger et al. have presented a distributed visualiza-
tion approach that allows volumetric visualization of models to be de-
fined through high-order polynomials [34]. As in ours their approach
is also based on ray-casting but, in contrast, they circumvent computa-
tion of the world-to-material space transformation by transforming the
FE solution into a Cartesian reference space with barycentric coordi-
nates. The FE interpolation is then replaced by a compact monomial
representation, which the ray-casting kernel can use during sampling
in physical space.

3 CURVILINEAR FINITE ELEMENT MODELS

While the concepts presented are, in theory, applicable to any FE
model, they unfold their full potential when applied to FE models
where the material space is defined through high-order basis functions.
The curvilinear element examples presented in this paper employ cu-
bic interpolation functions in each dimension, resulting in an interpo-
lation function that is a degree-9 polynomial. In several domain areas,
as for instance in bioengineering [18, 38], the number of FE elements
is relatively low and high-order interpolation functions are used.

FE models are defined through two coordinate systems. The world
coordinate system provides the position and orientation of the ele-
ments in space by defining a set of nodal points, x(e j), for each element



(a) world space (b) ξ space (c) world 7→ ξ

Fig. 3. Transforming straight rays given in world space, (a), to ξ space,
(b), causes these rays to be curved. View rays that are parallel and
similar in world space, (c,left), will be projected to similar curves in ξ

space, (c,right). The dots show the points used for calculating the proxy
rays shown, with the dotted lines emphasizing the relevant face.

e j. These nodal points can be arbitrarily oriented in space. The second
coordinate system is the the material, or ξ , coordinate system which
defines elements using simple geometric shapes, such as tetrahedra,
prisms, pyramids, or unit cubes, which are decoupled from the actual
geometry. The examples in this work are constructed based on unit
cubes. In this case, the material coordinate system is cartesian with
ξ1,ξ2,ξ3 ∈ [0,1] as basis for a right-handed coordinate system. World
and material coordinate system are connected by requiring each el-
ement, e j, with ξi(1) = x(e j)

2,i , i = 1,2,3 be such that any point in the
domain has a world coordinate x with an associated ξ coordinate. This
association is provided by a set of mapping functions, φi(ξ ). The de-
pendent variables are almost always expressed in ξ coordinates, since
ξ coordinates are independent of the element geometry and thus sup-
port the analysis of multi-parametric data and the comparison of differ-
ent FE models. Thus, the dependent variables and the FE interpolation
functions are defined in ξ space while the nodal points are defined in
world space. This combination allows us to exploit the interpolation
functions in order to compute variable values for all world space co-
ordinates lying inside the model. The relevant mathematical concepts
for FE modeling used in this paper are described in more detail in
[38, 3, 33, 31, 16].

When visualizing such models world coordinates are usually more
convenient to use, as they define the position and orientation of the
elements. As soon as the dependent variables have to be accessed
however, the ξ coordinates need also be taken into account as the de-
pendent variables can only be accessed through transformation into ξ

space. Thus, the world coordinate system can be used for finding ray
intersection points with the elements, while the actual ray traversal is
performed in ξ space. As can be seen in Figure 3, this transformation
affects the geometry of the viewing rays, which can end up as curves
in ξ space. While the transformation from ξ space to world space can
be computed fairly easy as x(ξ ) = ∑

n
i=1 xiφi(ξ ), for n nodal coordi-

nates, xi, and basis functions, φi, the inverse transformation required
during ray-casting is computationally much more demanding. Numer-
ical methods, for example the multi-dimensional Newton method [27],
which are often applied to perform this transformation, involve high
computational complexity and thus are not feasible in an interactive
context. Therefore alternative approaches are necessary to avoid the
computational complexity of the world to ξ space transformation in
the rendering stage of the visualization pipeline.

4 COHERENCY-BASED CURVE COMPRESSION

In this section we present the basis for a novel ray-casting based algo-
rithm for the interactive exploration of curvilinear FE models.

The straightforward approach for ray-casting FE models would be
to march along a ray in world space and transform each world space
sample coordinate, x, into its corresponding material coordinate, ξ ,
before accessing the dependent variables. As shown in Table 1, this
approach is computationally very demanding and therefore cannot, in
general, be performed at interactive frame rates. By using our ap-

proach we are able to shift this, originally view-dependent, computa-
tion from the rendering stage into the data processing stage of the visu-
alization pipeline. Thus, we can reduce the computational load during
rendering and achieve interactive frame rates when volume rendering
curvilinear FE models.

To perform the desired shift from the rendering stage into the data
processing stage, we exploit the following key observations about the
degree of coherency of curvilinear FE models. FE method grids are
designed to minimize approximation errors in the solution and to en-
sure convergence. In particular the Jacobian of the world-to-material
coordinate mapping must not contain any singularities, and the grid
resolution needs to be high enough that variations of the unknown
variables can be approximated adequately with the underlying FE ba-
sis functions [17]. This implicit smoothness constraint is exploited
in our technique since it also limits the shape variations of neighbor-
ing rays in world coordinates mapped into ξ space, i. e., we can as-
sume some degree of intra-element coherency between adjacent rays.
Because the Jacobian does not contain singularities we can employ
the Newton method, or similar solvers, to compute the inverse of the
world-to-material coordinate mapping.

Many FE applications also require some degree of inter-element
compatibility, and some degree of symmetry and self-similarity. These
characteristics result in a FE mesh with clusters of similar elements,
and hence some degree of inter-element coherency. Figure 3 (c) illus-
trates this coherency as it shows the shape of rays in ξ space (right),
which adjacently traverse world space (left).

In addition, coherency is supported as most models in practical ap-
plications need well-behaved elements, i.e. low distortion and an as-
pect ratio close to one, in order to result in a stable numerical sim-
ulation. The approach presented uses precomputation, which is per-
formed within two preprocessing steps as shown in Figure 2. In the
first step, we compute a high number of proxy rays in ξ space. These
proxy rays act as a view- and resolution-independent spline represen-
tations of the actual viewing rays that are cast through the ξ space dur-
ing rendering. In the second step, we exploit inter- and intra-element
coherency to reduce the vast number of proxy rays to a representative
subset, which is then used during GPU-based ray-casting in the third
step. By exploiting the precomputed data FE models can be explored
interactively by changing the transfer function and other rendering pa-
rameters. The following two subsections describe the two preprocess-
ing steps, while the GPU-based ray-casting is discussed in Section 5.

4.1 Proxy Ray Generation
To be able to compute a complete set, R, of proxy rays, it is essential
that it covers all parts of the FE model. This means that both the world
and the ξ space are densely populated with straight and curved rays,
respectively. However, since the view direction used during rendering
affects the ray traversal direction and the proxy rays are directional, it
is not sufficient that all positions within an element are close to a single
proxy ray; they must also be close to proxy rays having different di-

Fig. 4. To achieve a higher degree of similarity during the curve cluster-
ing we exploit the orientation invariance of the proxy rays and transform
them into a common coordinate system where the principal curve axis
coincides with the z-axis. Furthermore we exploit scale invariance to
align all exit points.



rections. As the interpolation functions in ξ space can, in principle, be
different for each element within one FE model, elements are treated
individually during preprocessing and rendering. Finding the desired
dense and omnidirectional proxy ray population for an element can
be performed in two ways. It can either be done adaptively, by ana-
lyzing the actual ray distribution within each element to find areas of
high importance and create more rays for these areas, or in a uniform
way over each element. As our algorithm is based on the inter- and
intra-element coherency the latter distribution is sufficient since we
assume a continuity between neighboring rays without high frequency
changes.

To obtain such a proxy ray distribution we exploit the intra-element
coherency, which is the result of a high similarity between rays in
ξ space that enter and exit an element through adjacent coordinates.
Therefore we compute a dense and uniform distribution, P, of poten-
tial entry and exit points on the surface of each element. While these
points should be distributed over the entire surface of an element, the
requirements with respect to the uniformity of P are rather loose due
to the intra-element coherency. We distribute the potential entry and
exit points by performing an equidistant subdivision of all faces of an
element. In this step the subdivision parameter, s f , controls the num-
ber of points equidistantly positioned along the u and the v coordinates
of a face. Thus the density of P can be directly controlled by chang-
ing the subdivision parameter, s f . To reduce the number of initially
generated proxy rays it would also be an option to vary s f based on
the extents of a face in world space. In cases where an element is
strongly deformed however, such that one face is much smaller than
other faces, this usually indicates strong variations in the FE simula-
tion which makes a higher sample density in world space necessary.
Therefore we have decided to choose a constant, but sufficiently high,
s f for the proxy ray generation.

The actual proxy rays are then computed based on the resulting
point distribution, P. To obtain proxy rays from P we consider all
pairwise combinations (p′, p′′), with p′, p′′ ∈ P. During rendering a
ray intersecting p′ and p′′ would be a line in world space and a curve
in ξ space. Figure 3 shows an example of 9 rays going from one point
of a face to all points of the opposite face. When connecting p′ and
p′′ with a straight line, representing a viewing ray in world space, the
proxy ray in ξ space can be obtained by sampling along the straight
line and transforming each sample’s position into ξ space. While this
sampling is performed with a fixed but sufficiently high sampling rate
sr, it should be pointed out that it does not represent or determine the
sampling rate used later during rendering. sr is only used to obtain
the geometry of the proxy rays, whereas the sampling rate used for
the compositing during ray-traversal in the rendering step can still be
chosen independently.

As the set of proxy rays, R, has to be dense its size is obviously a
limiting factor. Assuming that our subdivision parameter, s f , would
result in n points along the u and the v coordinate of an element’s
face, we would have n2 grid points on each face. Thus we would
have n2 · |F | grid points in total, assuming that each element has |F |
faces. This would result in rt = (n2 |F |)2 proxy rays to be precom-
puted. Though we have kept s f constant to allow a less complex im-
plementation of the ray-casting process, we have other possibilities to
reduce the size of R. To achieve this reduction we exploit properties of
the standard volume rendering integral which is used in the rendering
stage:

L(x,ωo) = L0 · e
−
∫ x

x0
κ(x′′)dx′′

+
∫ x

x0

c(x′) · e−
∫ x

x′ κ(x
′′)dx′′dx′

where c(x′) represents the emissive color at sample x′ and
e−

∫ x
x0

κ(x′′)dx′′ represents the exponential falloff between x0 and x.
When exploiting this rendering integral the same observations hold
as when applying the integral within the context of regular volume
rendering. For a ray cast through a medium the application of this in-
tegral results in an exponential falloff, i. e., when the ray is cast from
one start point, x0, to one end point, xn, the samples in the regions sur-
rounding x0 will have considerably more influence on the image than

those around xn. In extreme cases where structures with a high degree
of opacity are rendered, samples close to xn do not have any influence
at all. To select an optimal proxy ray subset during the precomputa-
tion stage we can take this observation into account. Therefore, we can
use two different point distribution densities for entry and exit points,
which is achieved by replacing s f with s′f and s′′f . Thus we obtain a
point distribution of higher density, representing ray entry points, and a
point distribution of lower density, representing exit points. When con-
sidering all entry and exit points of these two distributions in a pairwise
manner, we achieve an importance-based ray sampling, where rays are
more accurately represented when being close to the entry points. In
comparison with the rt rays computed with the uniform proxy ray dis-
tribution, the importance-driven ray reconstruction approach results in
ri = (n f · |F |) ·(nb · |F |) rays, where n f and nb represent the number of
precomputed entry and exit points. This results in a decreased num-
ber of proxy rays, where the proxy ray set R is more dense towards
the respective entry points and thus better complies with the exponen-
tial falloff which occurs during ray-casting. This works best for rather
homogeneous parameters, while in cases where all features of inter-
est are located close to the faces a uniform proxy ray distribution is
beneficial.

As s f should be high but independent of the sampling rate used
during rendering, it is unfeasible to store the proxy rays based on the
precomputed samples. Under the assumption that the proxy rays are
well-behaved and at least C1 continuous, we can reduce the memory
footprint by storing the proxy rays as parametric curves facilitating
a lower number of control points than the original sampling density,
s f . We will present the ramifications of different numbers of control
points for the error in Section 7. Due to the requirements regarding in-
terpolation of the control points, local control, numerical stability, and
non-complex evaluation, Catmull-Rom splines [5] are a natural choice
for this parametric representation. Furthermore Catmull-Rom splines
have built-in C0 and C1 continuity, thus being continuous in position
as well as tangent vector, leading to a smooth curve. Additionally,
Catmull-Rom splines allow us to obtain and interpolate the start and
end tangent of the curved rays directly.

4.2 Curve Clustering
The curve compression, which is used to obtain a manageable set of
proxy rays during rendering, first increases the similarity of the proxy
rays by exploiting orientation and scaling invariance, before comput-
ing a representative subset using a clustering algorithm, whereby the
increased similarity of the proxy rays allows us to compute a smaller
subset of proxy rays while maintaining the same quality of compres-
sion.
Curve similarity. In the previous subsection, we have described how
to obtain a densely populated set of proxy rays that are represented as
parametric curves in ξ space. As this set is too large to be considered
during rendering we will eliminate proxy rays from within this set by
taking into account the following three observations which increase
the similarity. First, a curve does not have a pre-defined entry and exit
point order. As the ray traversal and the compositing are performed in
the rendering stage we do not need to distinguish between two proxy
rays with swapped entry and exit coordinates, if both rays are the same.
The second helpful observation refers to the orientation of proxy rays
in ξ space. As a proxy ray represents only the traversal path but not
the dependent variables accessed during a traversal, we do not need
to distinguish between two proxy rays which have the same overall
geometry but are differently oriented in ξ space. As long as we know
the entry and the exit point of a proxy ray we can orient the proxy ray’s
geometry such that it is correctly aligned in ξ space. This property is
also related to the third observation, the length invariance, which we
also exploit to increase the similarity during curve compression. As
soon as we know the coordinates of the entry and the exit points we
can not only adapt the orientation of a proxy ray but also its scaling.
Therefore we do not have to distinguish between proxy rays which
have the same geometry but differ only in the scaling factor along their
principle axis.

We exploit the three observations stated above in order to achieve



a higher degree of similarity during the subsequent clustering-based
curve compression. To do so we transform the proxy rays into a com-
mon coordinate frame without compromising the uniqueness of each
proxy ray as they comply to orientation and scaling invariance. The
transformation is done in such a way that the entry point and the exit
point lie on the z-axis, with the proxy ray’s principal axis aligning with
the same axis (see Figure 4). To be further able to define the rotation
around this axis we take into account the first control point, ci, that is
not colinear with the start and end points and transform the proxy ray
such that ci lies in the yz-plane. If there is no such point, the proxy
ray is a straight line so that it can be rotated to coincide with the z
axis. After this transformation, Mtrans, has been applied all proxy rays
lie in the same coordinate system as shown in Figure 4, and thus the
comparison performed during clustering produces a higher degree of
similarity. While this transformation into a common coordinate system
indirectly reduces the number of rays, it requires us to store the angle
of rotation, θ , for each proxy ray. This is necessary as θ is required
to be able to compute Mtrans

−1, which is needed during rendering to
correctly orient the precomputed proxy rays.
Curve clustering. To reduce the size of R we exploit the inter- and
intra-element coherency discussed above. This allows us to perform
clustering in order to obtain a representative subset of R, called R′.
Several algorithms have been proposed for clustering curves and we
have decided to exploit the approach proposed by Abraham et al. [1].
As this approach applies the clustering to the curve coefficients instead
of the control points, it can be proven that the derived cluster represen-
tatives are optimal candidates. As we have previously increased the
curve similarity of the set of proxy rays, R, by transforming them into
a common coordinate system, we can use a lower number of cluster
representatives when using the clustering method. This reduces the
data size as well as computation time needed for the clustering. We
will show in Section 7 how the number of clusters affects the achieved
quality of the clustering.

Abraham et al. state that the comparison metric used during the
clustering is the most crucial part, as it directly defines the similarity
of two curves [1]. Inspired by their work we use the spanned area
between two proxy rays as a metric. To compute the spanned area,
we equidistantly sample the proxy rays with a high sampling rate, and
generate a triangle strip between the sampling points. The similarity
can then be expressed by a Riemann sum of the triangle areas. If we
have two proxy rays, a and b, with their sampled points, a1, . . . ,an and
b1, . . . ,bn, where due to the transformation Mtrans, a1 = b1 and an = bn
holds true, we can calculate the approximate area between the rays. If
xiy j denotes the vector from xi to y j, then the similarity of a and b is
proportional to:

2 ·d(x,y) = ‖a1a2×a2b2‖+
n−2

∑
i=2
‖aiai+1×aibi‖+‖bibi+1×bi+1ai+1‖+

‖an−1an×an−1bn−1‖,

It is clear that this function fulfills the metric traits of non-negativity,
the identity of indiscernibles and symmetry, since all these properties
hold for the area computation as well. Although we could have used
the closed solution for the two curves and compute the analytically
correct solution, we wanted to use the same metric for non-parametric
curves as well. The same metric presented here will be used in the
error analysis, where no closed solution for the bent ray is available.

For the actual clustering we exploit the k-means clustering algo-
rithm which was originally presented by Hartigan [13]. It has the ben-
efit that it is robust even with large high-dimensional data, and only
needs the number of final clusters and a metric as parameters. Unfor-
tunately the number of clusters is not known a priori and, in fact, there
might be no definite answer as to which is the best number in general.
To deal with this problem we have evaluated the impact of different
numbers of clusters in Section 7. Alternatively, one could apply algo-
rithms for finding an optimal number of clusters, such as for instance

k-fold cross-validation, which is often used together with k-means. As
output, k-means provides the desired number of representative proxy
rays, one for each of the clusters. Besides the obtained cluster repre-
sentatives we need to store for each proxy ray the cluster ID as well as
the angle θ The cluster ID is used to determine the cluster to which it
belongs.

5 BENT RAY-CASTING

While Section 4 gives a comprehensive overview of the preprocessing
steps needed to obtain the proxy ray set, R, and the clustered set, R′,
the actual rendering process is discussed in detail within this section.
We perform GPU-based ray-casting by exploiting the data generated
during the preprocessing stage, i.e., all cluster representatives as well
as a list, for each proxy ray, storing the associated cluster ID and the
rotation angle θ . As the elements are treated individually we need a
way to be able to associate ray segments with the elements. Thus the
rendering stage is divided into three substages. First element peeling
which allows us to obtain the entry and exit points for each element.
Second ray marching, where a ray in ξ space is reconstructed from the
preprocessed data before it is traversed. Third ray interpolation, which
is used to be able to deal with less dense proxy ray sets R. These three
substages are discussed in the following three subsections.

5.1 Element Peeling
As the FE models consist of several elements they will, in general,
overlap in image space. Therefore mechanisms are needed to deter-
mine which sequence of proxy rays best represents a specific pixel. To
obtain this sequence of proxy rays we employ a modified depth peeling
approach [19]. With this approach we can peel away, layer-by-layer,
from the rendered FE model by using an additional depth comparison.
When using depth peeling however, it is crucial to be able to distin-
guish between different fragments solely based on their depth values.
Unfortunately, in our case this is not possible. As a FE model consists
of several adjacent and touching elements, coinciding depth values are
common and need to be handled robustly. As illustrated in Figure 5,
two cases of depth coincidence occur. Point coincidences occur at
the corners of adjacent elements (top) and surface coincidences oc-
cur where two adjacent elements’ surfaces are touching (bottom). To
deal with this issue we have implemented multi-layer depth peeling,
where we take advantage of several attributes to resolve the depth co-
incidences without introducing errors. Figure 6 shows the employed
information next to the color coded ξ and world space coordinates of
the first two layers of a FE model. Besides the depth values we also
take into account the current element’s ID, as well as the ID of the cur-
rent face in our peeling approach. Thus we can resolve the described
coincidence cases and retrieve the entry and exit points for the current
view ray segment. This allows us to fetch the cluster representative for
this pair (see Section 6) and perform the ray marching.

5.2 Ray Marching
Once we know which proxy ray information needs to be accessed,
we can reconstruct its ray geometry by retrieving the spline coeffi-
cients for the obtained cluster ID. The reconstructed spline is then

Fig. 5. Two cases of depth coincidence can occur, as illustrated (left),
when rendering adjacent polygons. Point coincidence occurs at the cor-
ners of adjacent elements (top), while surface coincidence occurs at the
touching elements’ surfaces (bottom). All coincidences can be avoided
(right).



(a) entry
world

(b) entry ξ (c) entry
depth

(d) entry ele-
ment IDs

(e) entry face
IDs

(f) exit world (g) exit ξ (h) exit depth (i) exit
element IDs

(j) exit face
IDs

Fig. 6. Depth peeling is used to extract the layers of the FE model during
rendering. The images show the world coordinates, the ξ coordinate,
its depth, the element ID, and the face ID (from left to right). The first row
shows the first depth layer and the second row shows the second depth
layer.

(a) Precomputed proxy rays with s f = 2

(b) Precomputed proxy rays with s f = 10

Fig. 7. Results of our approach with two different parameter sets. The
first row shows a precomputation with a grid parameter of s f = 2 and
the second with s f = 10. Within each row we show the application of
standard ray interpolation (left) as well as intra- and inter-ray interpola-
tion (right). As shown in the close-ups, intra- and inter-ray interpolation
reduces noticeable artifacts. Artifacts are still noticeable with 2×2 proxy
rays, as shown in (a, right)

transformed back from the canonical orientation along the z-axis by
applying Mtrans

−1, such that the spline lies between the entry- and the
exit-point of the actual viewing ray in world coordinates. Although
the reconstructed spline is similar for pixels in a local neighborhood,
the specific path is different because it is fitted to the specific entry
and exit-point combination of the viewing ray. Once the proxy ray has
been transformed back into its original location we can march along
it and perform the actual bent ray-casting by fetching the dependent
variables from the ξ space using our spline representation. The ex-
pensive world-to-material transformation that would be necessary in
the straightforward approach is replaced by an evaluation of the pre-
computed spline representation.

To ensure that we consider possible high-frequencies in the ma-
terial data, we need to ensure an equidistant sampling along the re-
constructed ray in material space in order to obtain optimal results.
The proxy rays, however, are parameterized by the parameter value
t ∈ [0,1] in world coordinates which does not take the shape of the ray
in ξ space into account, i.e., given a spline s, ‖s(x)− s(y)‖ 6= ‖x− y‖.
That means that an equidistant sampling in world space will result in
sampling points that are not equidistant along the curve in ξ space.
As illustrated in Figure 8(a), we address this problem by using an arc
length parametrization as presented by Guenter and Parent [12]. This
leads to a function t 7→ t ′. If the sampling is done using t ′ instead of t,

the sampled values will be equidistant along the curve in ξ space. To
ensure accuracy w.r.t. the rendering integral, we employ the equidis-
tant spacing in ξ space to access the dependent variables, but use the
distance in world space for the opacity computation.

The subdivision of a curve ray penetrating the whole FE model into
segments, based on the penetrated FEs, requires an appropriate border
handling scheme. If we sample the ray equidistantly, in a naı̈ve way,
the last point on the ray, which lies on the exit face of a FE, will, in
general, not coincide with an intended sampling point. Special con-
sideration is needed when handling a ray, a, that is divided into two
segments, r and s, in such a way that rn = s0, i. e., the last sample
point of r is the first sample point of s. In this situation we would
have an equidistant sampling rate of |ai−ai+1| = δ for the two rays.
However, the naı̈ve implementation will result in |rn−1− rn| 6= δ . To
remedy this, we do not sample the last point on each ray but save the
distance |rn−1− rn| instead and use it as an offset for the first sampling
point in the next ray segment (see Figure 8(b)).

5.3 Ray Interpolation
In order to improve the image quality of our ray-casting approach,
we introduce two specialized interpolation schemes: inter-ray inter-
polation and intra-ray interpolation. With the inter-ray interpolation
we use the four nearest proxy rays instead of the ”nearest-neighbor”
proxy ray for a given pixel position, and interpolate between them.
This interpolation is carried out by using bilinear interpolation at ev-
ery sample position along the viewing ray. The interpolation factors
for these bilinear interpolations are based on the factors derived for the
entry and the exit face. The intra-ray interpolation, instead, employs
swapping of entry and exit points in order to obtain a mirrored copy
of the current ray. Thus we can interpolate between the original ray at
position t and the mirrored ray at position t ′ = 1− t while traversing
the initially obtained ray. Both of these interpolation schemes improve
the image quality in situations where only a low resolution is available,
as we show in Figure 7.

6 IMPLEMENTATION

In this section, we explain all relevant implementational details regard-
ing concepts mentioned previously.
Proxy Ray Generation. In order to have a consistent memory lay-
out we will use the same data structure to store the computed control
points here as we will use later in the rendering stage. There are two
demands on the data structure: given the parameters for the stored
value, access should be in O(1) and it should have a rectangular struc-
ture to be efficiently usable at GPU level. The parameters necessary
for describing each proxy ray uniquely are (e, fs, fe, ps, pe), with e be-
ing the element number, ps the position on the entry face, fs, and pe
the position on the exit face, fe. Let |E| denote the total number of
elements and |F | be the number of faces per element. Furthermore,
recall that s′f and s′′f , as defined in Section 4.1, are the subdivision pa-
rameters that control the number of points on the entry and exit face

(a) Equidistant sampling

e

(b) Boundary handling

Fig. 8. (a) To achieve equidistant sampling along a ray in ξ space (top),
an arc length parametrization is applied resulting in a non-uniform sam-
pling in world space (bottom). (b) Rays penetrating multiple elements
must be processed such that constant sampling step sizes are obtained
at the borders. The overshoot, e, of the first element can be used to
offset the first sampling point in the next element.



Fig. 9. Memory layout used to gain access to the precomputed proxy ray information. To retrieve the information required during rendering in
constant time, a hierarchical subdivision is used. For each proxy ray, we store the cluster ID as well as the rotation angle θ .

respectively. It then holds true that p′f ∈ [0,s′f ] and pe ∈ [0,s′′f − 1].
Figure 9 shows the memory layout that we have chosen for this set-
ting. At the highest level of the hierarchy we arrange the data based
on fs along the x-axis and e along the y-axis. Thus we obtain |F | · |E|
cells which contain the precomputed information for rays entering e
through fs. Each of these cells is partitioned based on the fe along the
x-axis, such that the resulting cells contain only the information for
those rays exiting through fe. We again partition the cells based on the
number, s′f , of precomputed points on the entry face. Finally the ob-
tained cells are partitioned based on the number, s′′f , of precomputed
points on the exit face. The memory layout depicted here is repre-
sented by the two following equations which allows us to store all data
in a rectangular manner:

px = ( fs · (s′f · s′′f · |E|))+( fe · (s′f · s′′f ))+(ps,x · s′′f )+ pe,x (1)

py = (e · (s′f · s′′f ))+(ps,y · s′′f )+ pe,y (2)

Curve Similarity. The first step here is to increase the similarity of
the stored proxy rays in such a way, that the subset, R′, is as small as
possible. Three transformations are performed after which each proxy
ray fulfills three traits. 1. The starting point, x0, is at (0,0,0). 2. The
first non-colinear point xi lies in the yz-plane. 3. The end point, xn,
is at (0,0,1). We apply three matrices Mt , Mrot , and Ms to all control
points, where Mt is a translation by −x0, Ms is a scaling by 1/(xn.z),
and Mrot is a rigid-body transformation that will rotate the points such
that xn is on the z axis and the non-colinearity is fulfilled. The multipli-
cation Ms ·Mrot ·Mt is equal to Mtrans as mentioned previously. Thus
we get new control points x′ = Ms ·Mrot ·Mt ·x with a higher degree of
similarity between proxy rays. By enforcing that xi lies in the yz-plane
we lose the rotational angle w.r.t. the z-axis. We will store this angle
θ for each proxy ray separately so that we can access it together with
the cluster id.
Curve clustering. In order to reduce the number of proxy rays which
need to be stored on the graphics card, we apply a clustering algo-
rithm such that multiple rays are represented by a single representative.
Finding a good number of iterations for the applied K-means algorithm
a priori is a hard problem, so we investigated multiple strategies. The
simplest, and already feasible, strategy to use is a fixed number of it-
erations (see Figure 13(b)). Another possible solution is to trace the
percentage of splines that change clusters in a single iteration, based
on the assumption that this number decreases asymptotically to 0. A
CPU implementation using C++ and OpenMP was used to generate the
measurements presented in Section 7. The clustering was performed
on 8 threads and it was found that the hard disk access, as well as the
computing power, are bottle necks for faster execution times. Addi-
tionally, an OpenCL-based implementation was tested that keeps the
cluster representatives for the current iteration in local memory and
fetches the splines from global memory.
Ray Marching. The rendering step starts with a depth peeling step to
get the entry- and exit points for each view ray. In general we set the
additional depth test to accept all fragments which have a greater depth
than or equal to that of the current fragment. To resolve the two co-
incidence cases, as presented in Section 5.1, we ensure that each pair
of entry- and exit-points has the same element ID. This, together with
ensuring different face IDs, is enough to correctly resolve the point
and the surface coincidence (see Figure 5). This additional informa-

(a) surface rendering (b) volumetric rendering

Fig. 10. FE breast model with MRI material space rendered as sur-
face representation showing the deformed and the undeformed surface
(a), and showing the deformed volume with our interactive volumetric
approach (b).

tion also leads to a more stable algorithm w.r.t. the available accuracy
of the depth buffer. We tested depth buffer accuracies of 16 and 24 bits
but found no noticeable visual differences. The approach also works
for several situations where the entry and exit points lie on the same
surface, as these points in general have unequal depth values thereby
making the test for face inequality unnecessary. In the case of a silhou-
ette edge, where two fragments coincide in the same depth value and
originate from the same element, we do not perform a depth peeling
but transform only the entry point and obtain a single sample.

The geometry representation of the FE models contains 4 values
for each node; the three color channels provide the ξ value (see Fig-
ures 6(b) and (g)) and the alpha channel stores the element for which
the nodal value is defined (see Figures 6(d) and (i)). Based on this
information, all free parameters for Equations 1 and 2 can be derived.
Thus, the cluster can be fetched for this entry-exit point pair and the
ray marching can be performed on the spline.
Element Generalization. The examples in this paper all use elements
with cuboidal parent elements. In order to apply the technique to dif-
ferently shaped elements, e.g., tetrahedral elements, methods must be
implemented for depth peeling and sampling the element faces. This is
straight forward. In fact, the current implementation already works for
differently shaped elements, e.g. where multiple vertices of the parent
element are mapped to the same vertex in world coordinates. This is
the case for the apex of the left ventricular model, where the resulting
elements have a curved wedge-like shape.

7 RESULTS

To assess the quality and the performance of the proposed visualiza-
tion technique we have applied it to different data sets. Below we
discuss the visual results, the introduced errors and, the performance
of our approach as well as the memory requirements.

7.1 Visual Results
To demonstrate the visual outcome of the proposed concepts, we have
applied them to different FE models which all consist of elements with
curvilinear boundaries. These vary with respect to the number of cells
and the order of the used interpolation functions. Although we include
only interpolation functions of a degree-7 or 9 polynomial, our method
is not limited to any specific order as long as the coherencies are ful-
filled. In the following paragraphs we describe these models and the



(a) polygonal rendering (b) opaque volumetric rendering

(c) translucent volumetric rendering

Fig. 11. FE tongue model rendered as a polygonal representation, (a),
and with our interactive volumetric approach, (b) and (c).

visual results achieved.
Breast model. We have applied our approach to a deformation model
of a breast data set, consisting of 60 tricubic elements, acquired from
an MRI scan. The dependent variables in this case are the actual inten-
sities of the MRI field, and the FE modeling has been applied to pre-
dict the supine shape of the data set originally acquired in the prone
position. Figure 10 shows a comparison of the supine position ren-
dered with our interactive volumetric approach, (b), as compared with
a standard surface based representation, (a).
Tongue model. Furthermore we have applied our approach to a model
of a human tongue, consisting of 64 tricubic elements, with simulated
tissue densities and muscle fiber directions. In this case each node
stores one coordinate vector, and seven derivatives and mixed deriva-
tives for the tensor product of the cubic Hermite interpolation func-
tions in all three coordinate directions. The results, as compared with
a polygonal representation, are shown in Figure 11. In this case in
particular, the multi-parametric capabilities of our algorithm are ben-
eficial as the tongue model contains a relatively high number of pa-
rameters. When one would apply resampling to all of these parameter
volumes instead, this would result in an unmanageable amount of data
for a reasonable resolution.
Heart model. A heart data set, which consists of 16 bicubic-linear ele-
ments (i.e. two interpolation functions are of cubic order, the other one
is linear), where the strain values for each point have been computed
from displacements obtained from tagged MRI data, serves as the third
example (see Figure 1). For our visualization we have taken into ac-
count the three principal strain directions, which are the eigenvalues of
the tensor. The principle strains include the maximum and minimum
deformation and the corresponding eigenvectors give the direction of
these deformations. These directions are circumferential, longitudinal
and radial.

7.2 Error Analysis
Our rendering approach contains several steps which potentially intro-
duce visual errors. First, the proxy ray generation explained in Subsec-
tion 4.1 introduces an error based on the number of actual proxy rays.
The visual impact of this error is analyzed in Figure 7. In the two rows,
different numbers of proxy rays have been computed. In the top row
a very low number, with 2× 2 proxy rays, per element face has been
chosen whereas the bottom row uses 10× 10 proxy rays. As can be
seen, the error introduced by a low number of proxy rays is clearly vis-
ible. However, when using 10×10 proxy rays no artifacts are visible
when using the proposed ray interpolation mechanism. As the clus-
tering itself also introduces an error, we have analyzed the impact in

(a) straightforward ap-
proach

(b) our approach (c) visual difference
(emphasized 10 times)

Fig. 12. Visual error as obtained when applying our technique. A
straightforward volumetric approach (a) and our interactive volumetric
approach (b) have been compared, which results in the error image ex-
aggerated tenfold (c).

Figure 13(b), which shows the error for a varying number of clusters.
It is obvious that the error becomes smaller if we use more clusters.
The number of clusters can, depending on data set, be quite low in
relation to the number of proxy rays as seen in Figure 13(c). While
these two analyses show the error for the proxy ray computation and
the clustering separately, we have also compared the results achieved
by our algorithm with the ground truth, a straightforward raycaster as
described in Section 4, which evaluates the world-to-ξ transformation
during each sample step. We chose this method as a comparison, be-
cause it produces the smallest error by itself and is thereby suited to
demonstrate the error introduced by our method. As can be seen in
Figure 12, the visual error is rather low, as only a tenfold exaggeration
of the generated error image makes it noticeable.

We described in Section 4.1 that we can use a varying number of
control points to represent the proxy ray. This, of course, is an approx-
imation of the original bent ray we get by using the straightforward
implementation. Therefore we analyze the effect of this parameter
has the error introduced by the representation. Figure 13(a) shows
this error, computed by comparing the spline representation to the ray
where each sample point is transformed. We sampled every ray at
a sufficiently high rate of 1024 points and computed the area metric
as described in Section 4.2. The abscissa shows the number of control
points representing the proxy ray, where 2 points denote a straight line.
For easier comparison, all error values were normalized with respect
to this value. As the error is dependent on the shape of the FE, we
computed the error for all proxy rays in the Heart and Tongue models.

7.3 Performance Analysis

We have to differentiate between the precomputation and the render-
ing step in the performance analysis. Although the time used for pre-
computation is dependent on both the proxy ray computation and the

Table 1. Performance analysis (in fps) of our technique for different
grid sizes compared with a straightforward (SF) implementation. The
setups match the first three subfigures in Figure 1: images showing
radial strain, circumferential strain, and longitudinal strain.

Figure 1 Pixel GPU Our Technique [s f , Clusters]
TF Setups Res (SF) 3,1024 5,2048 10,4096
Radial 2562 2.58 14.52 14.25 14.05
Strain 5122 1.33 11.40 11.71 11.02

10242 0.41 7.09 7.02 6.83
Circum- 2562 2.60 14.63 14.81 14.21
ferential 5122 1.30 12.09 11.85 11.72
Strain 10242 0.40 7.15 7.12 7.10
Longi- 2562 2.53 14.66 14.70 14.74
tudinal 5122 1.35 11.78 11.78 11.83
Strain 10242 0.40 7.12 7.12 6.88



(a) Error introduced by approximating the bent ray
by a spline

(b) Error introduced by clustering (c) Image error measured for varying cluster sizes

Fig. 13. Error measurements. (a) shows the error introduced by the approximation of the correct bent ray by sampling a spline. The abscissa
shows the number of control points used to construct the spline, where 2 points represent a straight line. (b) shows the error for varying numbers of
clusters depending on the number of iterations after which the k-means algorithm has stopped. Based on the heart data set with a grid resolution
of 5× 5, which resulted in 360.000 rays. (c) shows the normalized absolute pixel error (background pixels are neglected) plotted against the
percentage of clusters relative to the total amount of curves. The calculations have been performed on the subfigures of Figure 1, thus varying the
transfer function and strain direction. All error values were normalized w.r.t. the respective highest error.

clustering, the latter takes more time than the former. In our unopti-
mized CPU implementation, the clustering for a 5×5 proxy ray setup
with 8192 clusters takes roughly 4-6 hours, while a 15×15 setup with
8192 clusters takes approximately 72-84 hours of time. We managed
to reduce this time with an unoptimized OpenCL implementation by
an order of magnitude to about 20-25 minutes for the 5×5 proxy ray
setup with 8192 clusters, which is in line with former works [22]. The
clustering and all performance tests were executed on an Intel Xeon
Quad-Core 3.06 GHz with 6 GB of working memory, equipped with a
Geforce 580 card with 1 GB of memory.

Table 1 shows the rendering performance of the presented volumet-
ric FE visualization technique, as compared with the straightforward
volumetric GPU implementation. As can be seen, the performance of
our technique is affected by image resolution and independent of the
number of clusters and proxy rays. The rendering quality is thus af-
fected by a trade-off between the number of proxy rays used during
the precomputation and the number of clusters used during the curve
compression. In the worst case tested our technique provides above
7 fps instead of 0.4 fps. While the 14.81 fps achieved with our method
in the best tested case enabled full interactivity, the 7 fps also resulted
in an interactive experience.

7.4 Memory Requirements

A limiting factor of the presented method is the memory that is re-
quired to store the proxy rays, angles and cluster IDs. Besides the
computational time, the available graphics memory is the only limita-
tion to the number of elements, grid resolution, and number of clusters.
In this section, we will consider the impact of each of these factors on
the memory requirements using the same definitions as in Section 6
with the addition of c as the number of clusters. The total number of
rays per element is given by rt = (s′f · s′′f · |F |)2 which leads to e · rt · sr
points that have to be transformed and stored. It should be noted that

Table 2. Memory consumption of data structures during rendering for
varying grid resolutions and number of clusters on the heart dataset.

s f Without With Certain Number of Clusters
Clustering 512 2048 4096

3 2.7 MB 0.39 MB 0.47 MB 0.82 MB
8 135 MB 18 MB 18.1 MB 18.5 MB
10 329 MB 43.9 MB 44.0 MB 44.1 MB
15 1.62 GB 222.5 MB 222.6 MB 222.9 MB

this data does not need to fit on the graphics card and is only an in-
termediate result. The required memory after the clustering has been
performed can be estimated by: c · sr + e · rt · 2. The first part of the
equation is the storage necessary for the clustered control points of the
representatives. The second part is the lookup table as described in
Section 5.1 and needs to store both the cluster ID as well as the angle.
A significant restriction on our method is obvious in the latter for-
mula. The second term grows linearly in the number of elements and
poses, therefore, a limitation on the mesh sizes we are able to render.
Example values for the heart are given in Table 2, when we assume
float precision, i.e., every point will occupy 12 bytes of memory, and
5 stored points per cluster.

8 CONCLUSIONS & FUTURE WORK

In this paper we have presented a ray-casting based approach that en-
ables the interactive exploration of high-order FE models. By shifting
the computationally complex world-to-material transformation from
the rendering stage into a preprocessing stage we are able to achieve
interactive frame rates and thus allow for an interactive, in-detail,
multi-parametric inspection of FE models using transfer functions and
other parameters on standard GPUs. We have demonstrated the out-
come of the presented approach by applying it to several real-world
data sets and analyzing the errors introduced by our approach. Fur-
thermore, we have discussed the rendering performance gain as well
as the memory requirements.

There are several opportunities to further improve the presented
concepts in the future. When precomputing the proxy rays we cur-
rently use a equidistant layout for the generation of the set, P, of uni-
formly distributed start and end points. In comparison with such an
equidistant layout more elaborate sampling schemes, as used in many
areas of computer graphics, might lead to an improved quality with the
same number of proxy rays. While our approach currently supports
scalar data only, in the future we plan to use the proposed method to
display vector and tensor data defined over ξ space.
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