SIGRAD 2013
T. Ropinski and J. Unger (Editors)

Poor Man’s Rendering Of Segmented Data

Stefan Lindholm' and Alexander Bock'

I'Scientific Visualization Group, Linkoping University, Sweden

Abstract

In this paper we present a set of techniques for fast and efficient rendering of segmented data. Our approach
utilizes the expected difference between two co-located texture lookups of a label volume, taken with different
interpolation filters, as a feature boundary indicator. This allows us to achieve smooth class boundaries without
needing to explicitly sample all eight neighbors in the label volume as is the case with previous methods. We also
present a data encoding scheme that greatly simplifies transfer function construction.

Categories and Subject Descriptors (according to ACM CCS):

1.3.6 [Computer Graphics]: Picture/Image

Generation—Antialiasing 1.4.6 [Computer Graphics]: Segmentation—Pixel classification

1. Introduction

Rendering of segmented data is a core topic in the field of
volume rendering. It is characterized in that it utilized exter-
nal sources for the classification of grid points, rather than
relying on user driven classification through, for example, a
transfer function. By spending more resources on the clas-
sification as a pre-process step, much more reliable feature
boundaries can be identified than what is possible through
classification schemes applied at rendering time. Naturally,
the topic of rendering segmented data is closely related to
that of the actual segmentation. See [KDC*00, HJ04, UH00]
for comprehensive overviews of the available literature. In
this paper, we assume that a full segmentation has been per-
formed such that the source data is complemented with a
label volume, i.e. an integer volume of the same dimension-
ality of the source data with a single per-voxel label denoting
the class membership (material) of the voxel.

The basic idea behind rendering segmented data is iden-
tical to standard volume rendering: to select visual parame-
ters based on the class membership of each sample. This is
greatly simplified since the required class membership can
be accessed directly though the label volume. Therefore, the
visual properties are often defined on a per-class basis, rather
than in a single global definition for the entire data. The com-
plexity of the per-class visual properties vary depending on
what the situation requires and can span from a unique color
to a fully defined class-specific transfer function. In this pa-
per we use a single transfer function per class but apply the
same shading scheme to all classes, however, it should be

noted that this is a stylistic choice rather than a requirement
of the approach.

A problem that arises when rendering segmented data is
that the basic approach to ‘just sample the label volume’
to extract class memberships is not as straight forward as
one might think. The simplest solution is, of course, to ap-
ply nearest neighbor sampling, which is guaranteed to re-
turn a valid class membership. Unfortunately, this leads to
boundaries with a very blocky appearance (see Figure 1(a)).
The membership operation is said to have voxel-resolution.
The most intuitive way to achieve a higher, pixel-resolution,
membership operation is naturally to allow for interpolation
when sampling the label volume. This is, however, not guar-
anteed to return a valid class label unless there is no more
than two classes in the entire volume. For example, an in-
terpolation in a boundary area between class 3 and class 5
would return a class label of 4 even if this was not existent at
that particular location in the data (see Figure 1(b)). An ap-
proach to achieve a pixel-resolution membership operation
for segmented data, called two-level volume rendering, was
presented in [HBHO3]. In this approach, all eight neighbor-
ing grid points in the label volume are sampled using near-
est neighbor interpolation in order to acquire the informa-
tion necessary to remap the 3-5 operation to a 0—1 range
and thereby avoid illegal interpolations. The result is much
smoother boundary representations that are more visually
pleasing. Unfortunately, the method requires an additional
seven texture lookups per step along the ray which is many
times unfeasible.

S. Lindholm & A. Bock / PMS

(a) Nearest neighbor

(b) Linear

Figure 1: Using the two native interpolation kernels alone
will result in undesired results. Nearest neighbor interpola-
tion (a) will create a blocky result, visually unpleasing. Lin-
ear interpolation (b) will produce misclassifications between
labels (see I and II) as the labels are integer values, and naive
linear interpolation will create a linear transition between the
source values.

In this paper we present a novel method that delivers re-
sults comparable to pixel-resolution schemes while only re-
quiring a single extra texture lookup. The core of our ap-
proach is to sample the level volume twice at the same loca-
tion, with and without interpolation (i.e, with nearest neigh-
bor vs. linear filtering). The difference between the two val-
ues is then used to smoothen the visual representation near
class boundaries without creating incorrectly interpolated
class values. We show that our method produces results vi-
sually comparable to methods that utilize full neighborhood
sampling while requiring a factor of 7 : 1 less additional tex-
ture lookups. Additionally, we also present a data compres-
sion approach that removes the need to have the label volume
accessible during rendering.

2. Poor Man’s Rendering With Label Volume

The implementation will be presented in three steps. First
we provide a few brief details on how to sample a single tex-
ture with different interpolation filters in OpenGL. We then
present how to compute the actual class membership of each
sample as well as the attenuation parameter ¢ that is used to
smoothen the boundaries.

Nearest Neighbor and Linear Sampling

As previously noted, the implementation relies on sampling
the same volume twice with different interpolation filters.
For many architectures, however, a single texture can only
be associated with a single sampling mode. One way to get
around this restriction is to always force the label volume to
be associated with linear interpolation. The nearest neighbor
sample can then be accessed by adding an offset that forces
the sample to be taken at the center of the nearest voxel. The

nearest grid point can be accessed as follows
Snear = floor (s 4+ vec3(0.5)))

where s is the original sample position along the ray and sy;,
is the position of the nearest neighbor. For OpenGL/GLSL
both samples can then be accessed using texture3D.
Note, that OpenGL uses voxel centric values, as opposed
to grid centric values, for texture3D and that the sam-
ple positions needs to be mapped accordingly. Alternatively.
the nearest neighbor sampling can be achieved using tex—
elFetch which should not require any additional mapping
of the sampling point.

Once the linear and nearest sample points have been com-
puted, they are used to extract the linear and nearest values
from the label volume, /j;;, and /near respectively.

Class Membership and Class Attenuation

In our approach the class membership is directly decided by
the nearest neighbor sample in the label volume, /j;,. This
means that membership itself is defined at voxel-resolution.
To achieve smoother class boundaries we introduce a class
attenuation parameter, t.

The attenuation parameter is computed from the nearest
and linear label values

t= abs(lﬁn — lnear)- 2)

In Equation 2, we see that = 0 as long as the interpolated
value is identical to the nearest neighbor value. This will be
the case as long as the local neighborhood around the sample
point only contains a single class. We can also note that if
the local neighborhood contains two or more classes, then
t > 0. The class attenuation parameter thereby functions as
a boundary indicator.

Interpreting the attenuation parameter as a boundary indi-
cator, we use it to adjust the opacity of the current sample.
Ideally, we want full opacity when the samples are fully in-
side a single class and zero opacity when samples are half
way in between two (or more) classes. Unfortunately, this
requires us to know all classes that affect the interpolated
value, which in turn would require us to sample the entire
neighborhood in the label volume (which we don’t want to
do). Instead, we always map the opacity to zero as ¢ reaches
0.5

o = (1—(20)%) . 3)

The full process is described in Algorithm 1 and illustrated
in Figure 2.

While Equation 3 largely achieves the desired effect, it
is important to note that it introduces a few predictable ir-
regularities. First, t = 0.5 only corresponds to the half way
mark between two labels if their numerical labels are sepa-
rated by a single unit (e.g. 1-2, 3-2). For all other cases, the
opacity will reach zero before the half way mark. Second,

S. Lindholm & A. Bock / PMS

$3 Blue grid point =3

O All red neighbors

=(1- (2;)2)0c: 0.96a

O Mixed neighbors (red nearest) © Mixed neighbors (blue nearest)

£3 Red grid point =2 Inear = 2 Inear =3

O All blue neighbors o

O Mixed neighbors (blue nearest) lin =2.2 hin=2.6

© Mixed neighbors (red nearest) t =abs(2.2-2) t =abs(2.6 —3)

o = (1—(2t)%)a=0.360

Figure 2: Example computations of ray contributions. The visible ray segment starts inside the red feature (class id 2), and
ends inside the blue feature (class id 3). The class membership of the two samples taken in between the features needs to be
decided. In our approach, their membership is fully determined by a nearest neighbor query in the label volume (here resulting
in Ihear = 2 and lhear = 3 respectively). However, in order to achieve smooth boundaries at pixel-resolution we employ an alpha
modulation based on the difference between the the nearest query and another query using linear interpolation (here resulting

in lnear = 2.2 and lnear = 2.6 respectively).

Algorithm 1 Poor Man’s Rendering with Label Volume

Require:
A source volume Vi and a label volume V.,
both present on the GPU
A set of labels {I,l5,- -+ ,In}
A transfer function, TF; for each label /;
Algorithm:
for all sample points along ray do
© Sample Vy, using nearest neighbor interp. — Inear
© Sample V}, using linear interpolation — /i,
< Compute attenuation parameter ¢ according to Eq. 2
© Compute alpha modulation according to Eq. 3
© Sample Ve using linear interpolation — vy,
¢ Select a TF based on /near
o Evaluate TFnear (Viin)
< Apply alpha modulation to output
< Composite output to result
end for

in some rare corner cases, the nearest neighbor value may
change before the opacity has reached zero, effectively cre-
ating a sharper than intended cutoff. In short, we have less
fine-tuned control over the opacity behavior across boundary
regions.

What makes Poor Man’s Rendering such an attractive
trade-off is that the visual impact of the expected irregular-
ities is near insignificant and thus acceptable given the in-
crease in performance compared to the full neighborhood
analysis.

3. Poor Man’s Rendering Without Label Volume

In this section we present a data encoding scheme that elim-
inates the need to upload the label volume to the GPU. The
encoding relies on a set of linear mappings (one for each
class) from the source volume to an encoded target volume.
The key here is to ensure that the co-domain of the mappings
each span a unique value range in the target volume.

For example, if we have three classes which voxels exhibit
overlapping value ranges (0.3-0.5, 0.2-0.7 and 0.1-0.5). We
then map the value ranges of these classes to three unique
value ranges in the target volume

1 :[0.3,0.5] > [0.1,0.3]
I :[0.2,0.7] > [0.4,0.6]
I3 :0.1,0.5] — [0.7,0.9].

This mapping makes it possible to determine the class of
a sample solely based on which unique range it belongs to.
Note that interpolation in this volume can still lead to invalid
results. The data encoding is performed as a pre-process step
and the encoded volume replaces the source volume on the
GPU. Meta information from the mappings also needs to be
uploaded in order to decode the volume during rendering.
The decoding process is simply the inverse of the linear map-
ping for each class.

The computation of the attenuation parameter ¢ without a
label volume works as follows. Two samples are taken from
the encoded volume, with nearest neighbor (enear) and linear
interpolation (eji,) respectively. First, the nearest neighbor
sample is used to identify the label and its valid value range
(from the uploaded mapping information)

enear — Inear, [emin7emax]~ 4)

Based on this the attenuation parameter ¢ can be computed
as

€max + €min €max — €min

))— 3 &)
clamped to the 0-1 range. Poor Man’s Rendering can now
be performed using Equations 5 and 3. The full process is
described in Algorithm 2.

t = abs(vyj, —

A positive side effect to the encoding is that the user can
now specify a single global transfer function without labels
while still maintaining separate visual properties for the dif-
ferent classes (since the value ranges are known to be non-
overlapping). This is particularly beneficial for systems that
are not previously set up to load and render segmented data

S. Lindholm & A. Bock / PMS

Algorithm 2 Poor Man’s Rendering without Label Volume
Require:
A source volume Ve and a label volume V;,
A target volume for the encoding Venc
A set of labels {l1,l, - ,In}
A transfer function, TF; for each label /;
Pre-process:
for all labels /; do
< Find the value range [rmn, 7max] covered by by the
voxels of class 7 in Ve
© Assign a unique range [emin, €émax] where ey, =0.1+
0.3i and emax = 0.2+ 0.3 in Venc
¢ Linearly map all voxels of class i from Vsrc — Venc as

[Fmin, "max] > [€min; €max]
¢ Save mapping information as M;

end for

¢ Upload V; to GPU together with meta information of

each class mapping

Algorithm:

for all sample points along ray do
¢ Sample Venc using nearest neighbor interp. — enear
¢ Identify current label lnear and valid value range
[€min, emax| based on which unique range that contains
€near
¢ Sample Venc using linear interpolation — ey,
< Compute attenuation parameter ¢ according to Eq. 5
© Compute alpha modulation according to Eq. 3
© Compute the inverse mapping eji, = Viip using M;
o Evaluate TF(vy;,)
< Apply alpha modulation to output
< Composite output to result

end for

or multiple volumes. A potential issue with this type of en-
coding is the loss of precision that follows from the remap-
ping. Since this naturally becomes a situational trade-off a
complete analysis is out of the scope of this paper. What can
be said is that as the more narrow the value ranges are per
class in the source volume, the less precision will be lost.

3.1. Results

In this section we present the results that we achieve using
our two proposed techniques. The real world dataset we use
is the Walnut with its accompanying segmentation. For the
comparisons we have applied alpha attenuation in bound-
ary regions also for two-level volume rendering although this
was not a part of the original presentation.

Figure 5 shows a comparison between our implementa-
tion of the two-level volume rendering to our method both
in the cases where a label volume is present and in the case
of the encoded volume. The test images were created using
a small stack of slices of the Walnut dataset with each label
value assign to a unique, fully opaque color. It is clearly vis-

\

(a) Two-Level Volume Render-
ing

3\

(b) Poor Man’s Rendering

Figure 3: Comparing a single slice off the Walnut dataset. In
the areas between labeled regions, the opacity of the single
sample is lowered due to the attenuation factor ¢ and there-
fore the background color is visible. Note that the thickness
of the boundary region in our method is depending on the
label values, whereas it is normalized in the two-level vol-
ume rendering approach. This is visible in (b) as the width
between the violet-red boundary is thinner than the violet-
yellow boundary.

ible that both interpolation kernels produce a superior visual
quality when compared with the nearest neighbor interpola-
tion. However, despite minor (expected) visual artifacts (see
lower left corner in 5(c)) our method performs reasonably
well and achieves a comparable result to the method employ-
ing a full neighborhood search for each segment. Figure 3
shows the two-level volume rendering and the our method
applied to a single slice of the volume. Note how the back-
ground color is visible between feature boundaries as the
opacity of the samples is reduced by the attenuation factor
t.

Figure 6 is a comparison of the walnut dataset show-
ing the different structures within the walnut. The visual
result for each segment is determined by its own, sepa-
rate 1-dimensional transfer function. Figure 6(a) and 6(b)
are rendered with the same rendering parameters and the
differences between the two techniques are shown in Fig-
ures 6(c) and 6(d) with the difference magnified by a factor
of 10. As expected, the bulk of difference is in the region
around the center, where a segment with label value 4 is ad-
jacent to the gray "air" surrounding it with a label value of 1.
This means that the transition in our method is much sharper
than in the reference image.

3.2. Discussion

In this paper we have presented an approach to achieve
smooth boundary transitions when rendering segmented data
while significantly reducing the number of necessary tex-
ture lookups compared to methods based on full neighbor-
hood analysis. The approach drastically reduces the amount
of samples necessary to achieve the boundary smoothness,

S. Lindholm & A. Bock / PMS

(a) Nearest Neighbor

(b) Two-Level Volume Rendering

(c) Poor Man’s Rendering (d) Intensites

Figure 4: Rendering a synthetic dataset with the Two-Level Volume Rendering (b) and the Poor Man’s Segmentation (c) com-
pared to the nearest neighbor filtering (a). (d) shows the values and the ordering of the intensity values for this dataset. As
expected, the Two-Level Volume Rendering produces uniform boundaries regardless value difference. In the Poor Man’s ren-
dering, the boundary regions are dependent on the intensity value difference of the features. Both methods show a visual artefact
in the area where three features coincide and the linear interpolation of green and blue results in yellow.

but does so at the cost introducing minor irregularities. The
artifacts introduced by Poor Mans Rendering has two main
visual manifestations. The first is an apparent widening of
the transitional region between two segments. This behav-
ior is predictable and can be minimized by intelligent selec-
tion of segment labels. For example, if a volume contains
three segments but two of the segments never overlap, then
the numerical label values can be selected such that the dif-
ference between two neighboring values never exceeds one,
in which case any widening will be prevented. The second
visual artifact is a non-smooth transition in neighborhoods
heavily dominated by a single segment, such as the bottom
of a depression. In such cases, the attenuation parameter is
not guaranteed to reach zero before the nearest neighbor
switches, resulting in a less smooth transition. It is possi-
ble to lower the impact of this artifact is to apply a stronger
mapping in Equation 3.

In terms of performance, the value of the presented meth-
ods depends on a set of circumstances, some more pre-
dictable than others. For example, an application that is
heavily bottlenecked by texture lookups is far more likely
to see significant speedups than an application that spends
most of its time of computations. On the other hand, the im-
pact of the introduced irregularities will vary between differ-
ent lighting and transfer function combinations which makes
the assessment on the speed-vs-performance trade-off very
much case dependent.

We believe our approach fills the gap between nearest
neighbor class assignment and methods that rely on full
neighborhood analysis. It could potentially be useful in cases
where acceptable framerates have a high priority, such as
previewing large datasets, interaction and transfer function
design. The option to encode the segment membership to-
gether with the source data should also simplify rendering

of segmented volume data on systems that may only have a
single global transfer function.

3.3. Acknowledgments

David Karlsson, technical director at Interactive Institute, for
pointing out the gap in the literature that this method fills.
The presented concepts have been realized using the Voreen
framework (www.voreen.org).

References

[HBHO3] HADWIGER M., BERGER C., HAUSER H.: High-
quality two-level volume rendering of segmented data sets on
consumer graphics hardware. In Proceedings of the conference
on Visualization 2003 (2003), pp. 301-308. 1

[HJ04] HANSEN C. D., JOHNSON C. R.: Visualization Hand-
book, 1 ed. Academic Press, 2004. 1

[KDC*00] KAUFMAN A., DACHILLE F., CHEN B., BITTER 1.,
KREEGER K., ZHANG N., TANG Q., HUA H.: Real-time vol-
ume rendering. International Journal of Imaging Systems and
Technology 11, 1 (2000), 44-52. 1

[UHOO] UDUPA J., HERMAN G.: Three D Imaging in Medicine.
CRC PressINC, 2000. 1

S. Lindholm & A. Bock / PMS

(b) Two-Level Volume Ren- (c) Poor Man’s Rendering

dering

(d) Two-Level Volume Ren- (e) Poor Man’s Rendering
dering without Label Volume without Label Volume

(a) Nearest Neighbor

Figure 5: Comparative results of the presented techniques. (b) and (d) show the Poor Man’s Rendering with and without a label
volume respectively, while (a) and (c) are rendered using the Two-Level Volume Rendering approach. Note that while the both
the Poor Man’s Rendering and the Two-Level approach produce much smoother and visually pleasing results than the nearest

neighbor filtering in (e), the differences between them is minimal.

(c) Difference Image

(a) Two-Level Volume Rendering (b) Poor Man’s Rendering

(d) Difference Image (x10)

Figure 6: Rendering the segmented Walnut dataset with our proposed method. (a) shows the reference image, created using the
two-level volume rendering, while (b) is rendered using Poor Man’s Rendering. (c) shows the absolute pixel-wise difference
images between the two results and in (d) this difference is enhanced by one order of magnitude. As expected, the techniques
differ only in the areas, where features touch whose label values differ by more than unity.

