
Eurographics Conference on Visualization (EuroVis) 2017
J. Heer, T. Ropinski and J. van Wijk
(Guest Editors)

Volume 36 (2017), Number 3

Dynamic Scene Graph:
Enabling Scaling, Positioning, and Navigation in the Universe

Emil Axelsson1, Jonathas Costa2, Cláudio Silva2, Carter Emmart3, Alexander Bock1, and Anders Ynnerman1

1 Linköping University, 2 New York University, 3 American Museum of Natural History

Figure 1: Accurate rendering of a real scale model of the New Horizons spacecraft taking measurements on Pluto. The model of about
2 m size is shown in its correct location relative to Pluto, which is about 6 · 1012 m from the coordinate system origin with the stars of the
constellation Ophiucus (about 1018 m) in their correct 3D positions. High precision is required for computing the correct location of images
on the surface of Pluto as well as correctly rendering the shadow cylinders of both Pluto and its moon, Charon.

Abstract

In this work, we address the challenge of seamlessly visualizing astronomical data exhibiting huge scale differences in distance,
size, and resolution. One of the difficulties is accurate, fast, and dynamic positioning and navigation to enable scaling over
orders of magnitude, far beyond the precision of floating point arithmetic. To this end we propose a method that utilizes a
dynamically assigned frame of reference to provide the highest possible numerical precision for all salient objects in a scene
graph. This makes it possible to smoothly navigate and interactively render, for example, surface structures on Mars and the
Milky Way simultaneously. Our work is based on an analysis of tracking and quantification of the propagation of precision errors
through the computer graphics pipeline using interval arithmetic. Furthermore, we identify sources of precision degradation,
leading to incorrect object positions in screen-space and z-fighting. Our proposed method operates without near and far planes
while maintaining high depth precision through the use of floating point depth buffers. By providing interoperability with
order-independent transparency algorithms, direct volume rendering, and stereoscopy, our approach is well suited for scientific
visualization. We provide the mathematical background, a thorough description of the method, and a reference implementation.

1. Introduction

Over the past centuries the ability to observe and collect data repre-
senting the physical world has been one of the great accomplish-
ments of mankind. This includes observations ranging from the
diminutive to the unimaginably large. Everything we know and
everything we can possibly know is constrained in size and dis-
tance by two boundaries. The upper limit is given by the size of
the observable universe with a comoving diameter of about 1027

meters. The lower limit is the Planck length, at which the structure
of space-time is dominated by quantum effects, of 10−35 meters.
Seamless positioning and navigation across this tremendous range
of scales, roughly 60 orders of magnitude, generates many chal-
lenges to visualization systems. Besides the issue of creating vi-
sual metaphors for objects and their interrelated positions, based on
different abstraction levels and contracted distance representations,
one challenge not immediately obvious is the limited precision of

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Axelsson et al. / Dynamic Scene Graph:Enabling Scaling, Positioning, and Navigation in the Universe

floating point numbers. Following a naïve approach, using a con-
ventional computer graphics pipeline with a global coordinate ori-
gin at Earth’s center, an object’s location cannot be described with
the necessary precision when viewing a spacecraft at the edge of
our solar system, or viewing micrometer-scaled scans on the sur-
face of Mars. The location of objects thus need to be expressed
in huge value ranges with great precision. Current computer hard-
ware is, however, limited to hardware accelerated computations of
single and double precision floating point numbers, which are in-
sufficient to represent microscopic objects and cosmological dis-
tances simultaneously. This lack of precision causes well-known
visual rendering artifacts, such as displaced vertices or z-fighting,
and generates intricate problems when displaying volumetric con-
tent. Furthermore, overflow and underflow of the available value
ranges results in undesirable clipping of near and far geometry.

In this work, we propose a general method, a dynamic scene
graph, which enables fast and accurate scaling, positioning, and
navigation without significant loss of precision. The concept is ap-
plicable to a variety of application domains requiring the combina-
tion of large distances and precise rendering, including astronomi-
cal and molecular visualizations. While being suitable for interac-
tive visualization, other possible applications include 3D modelling
tools, movie production software and video games.

The method is based on an analysis of the sources of precision
errors and range overflow problems in a conventional computer
graphics pipeline. Using interval arithmetic to track floating point
rounding errors, we are able to identify sets of operations that may
introduce precision problems. We combine this information with
the observation that high level of detail is only required for nearby
objects. The underlying technique relies on dynamic updates and
traversals of a scene graph where cameras automatically attach and
detach to the closest object of interest. The new object of interest is
then used as the new coordinate origin and thus automatically en-
sures the highest possible numerical precision for salient objects.
Furthermore, the scene graph can be updated to allow scene graph
nodes to be dynamically attached to different parts of the graph.
This enables objects to be represented with high precision at multi-
ple places, for example when a spacecraft is orbiting multiple plan-
ets during its lifetime. This approach enables an easy integration
into existing scene graph implementations.

The dynamic scene graph has been implemented in the open
source software project OpenSpace [Git]. OpenSpace has the goal
of interactively visualizing and contextualizing a range of astro-
physical data, including the most recent updates to databases, and
even concurrent visualization of captured and simulated data. The
software framework is primarily designed for immersive environ-
ments, such as dome theaters at planetariums, and it is targeting
public engagement in science. Examples of data that can be con-
currently visualized cover a wide range from sub-atomic particle
simulations, via micrometer-scale discoveries made by rovers on
the Martian surface, to volumetric simulations of entire galaxies.

Many state-of-the-art theaters and planetariums support stereo-
scopic viewing and recently the interest in immersive visualization
in VR environments has increased. Thus, software needs to sup-
port stereoscopic rendering and the ability to render on multi-pipe
systems and complex display configurations. This poses another

challenge when dealing with multiple scales as the eye separation
needs to be adjusted to the current scale of interest. Our dynamic
scene graph approach offers a seamless solution to this problem.

It should be noted that our dynamic scene graph is applicable
to any visualization tool that uses scene graphs to represent ob-
jects, and is compatible with techniques for volumetric rendering
as well as order-independent transparency techniques. In summary,
our contributions include:

• A Dynamic Scene Graph approach for representing objects and
cameras to avoid precision-related rendering artifacts.

• A general method for rendering objects with a wide depth range
and precision without the explicit need for near and far planes.

• A scheme for seamless adaption of the eye-separation used for
stereoscopic rendering.

• An analysis of floating point precision errors using interval arith-
metic.

• A method for dynamically updating the parent/child relationship
for scene graph nodes.

The paper is structured as follows: After describing the related
work in the following section, we provide a theoretical background
for the sources of floating point inaccuracies in Section 3, followed
by a description of our proposed dynamic scene graph method in
Section 4 and its results in Section 5.

2. Related work

Computer graphics and interactive visualization are immensely
valuable tools for communicating scientific findings and contex-
tualizing information. Notable examples of applications in which
huge scale differences are visualized include movie productions,
such as Powers of Ten by Eames [EE77] from 1977, as well as in-
teractive software, such as Uniview [KHE∗10], DigiStar [Eva16],
or DigitalSky [Sky16], which are based on curated datasets con-
taining information about our universe [Abb06]. Virtual reality en-
vironments such as planetariums [MSK∗10, LAE∗01] have always
been in the focus of educators, but a shift towards supporting data
inspection on consumer grade hardware is ongoing [NPH∗09].

Fu et al. [FHW06] categorized the problem of large scale navi-
gation. Techniques for travel constrain the user input with the goal
of supporting the travel towards a selected target, whereas tech-
niques for wayfinding support the user in selecting a target by pro-
viding a spatial context. Our travel component is based on their
description of a Spatial Scaling Navigation Model operating on a
logarithmic camera model in which the navigation speed is depen-
dent on the distance to the object of interest. In terms of Techniques
for wayfinding, Li et al. [LFH06] introduce a world-in-miniature
techniques based on logarithmic landmarks for navigation support
in astronomical data. Combining this with the concept of power
cubes, described in earlier works [FHW06], enables the creation of
paths in this logarithmic space to aid in the large-scale navigation.

The concept of power scaled coordinates (PSC) or power ho-
mogeneous coordinates, introduced by Hanson et al., addresses
the travel challenge when creating animations showing large scale
differences [HFW00]. The method uses four-dimensional floating
point vectors where the first three components determine the direc-
tion and the fourth encodes a logarithmic scaling coefficient. The

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Axelsson et al. / Dynamic Scene Graph:Enabling Scaling, Positioning, and Navigation in the Universe

Figure 2: An illustration of the effects of limited coordinate preci-
sion where the number of mantissa bits is limited to 5 when visual-
izing a system analogous to a world coordinate system in a scene
graph. Increasing distance leads to decreasing precision.

authors successfully create a powers-of-ten animation in which in-
creasingly larger objects are shown with increasing distance to the
Earth. This elegant solution is viable for scenes where the required
precision decreases with distance from the origin, as it does not
solve the problem of catastrophic cancellation and thus prohibits
high-precision regions in large distances from the origin.

Fu and Hanson also introduced a depth buffer remapping to
cover a wider range of distances than possible with a fixed point
depth buffer and conventional near and far planes [FH07]. The
depth buffer range is divided into regions where small and large
values are remapped logarithmically. While this method is bene-
ficial for some specific type of scene content, the method does not
provide a generic way to select appropriate threshold values and the
choice of separate regions with different mapping is cumbersome.

The ScaleGraph, introduced by Klashed et al. [KHE∗10] as a
part of the Uniview software, is the most similar to our proposed
method. It employs a scene graph with sub-scenes to which cam-
eras belong. The content of the current sub-scene is rendered in a
local coordinate system with high precision and thus allowing mul-
tiple regions to be represented with high relative precision. Content
outside the current sub-scene is translated onto the scene’s bound-
ary and scaled to compensate for perspective effects. This trans-
lation, however, leads to inconsistencies in stereoscopic rendering
when switching scenes as objects jump from the bounding sphere
of a scene to its physical location. As their presentation was fo-
cussed on the Uniview system as a whole, the detailed ScaleGraph
descriptions are lacking and thus make it hard to reproduce.

Level of detail (LOD) and multiresolution methods are crucial
when visualizing and navigating across large data sets [Lue03].
By using representations with fewer vertices and lower resolution
textures to render distant objects, more resources can be directed
towards rendering salient objects. However, these methods do not
mitigate degradation of precision associated with conversions be-
tween coordinate frames.

3. Theoretical motivation

Improvements in hardware and software have led to optimized
modern graphics processing units that work efficiently on floating
points. In order to understand the precision and range limitations

Figure 3: Floating point error at Pluto. Floating point quantiza-
tion are visible at Pluto’s distance of 5.1 billion km from the Sun
using PSC. Our method achieves high fidelity renderings while still
representing objects with single precision floating point numbers.

of the computer graphics pipeline, it is necessary to consider the
properties of floating point numbers and available operations.

3.1. Floating point numbers

The IEEE754 standard for floating point numbers [ZCA∗08], used
in CPU computations as well as in graphics hardware, enables the
representation of a large number range by encoding values as a
sign, a mantissa, and an exponent. Single precision numbers use 1
sign bit, 8 exponent bits, and 23 mantissa bits. This encoding re-
sults in high precision close to zero, decreasing precision for larger
numbers, and a dramatic increase in value range. One important
characteristic of floating point numbers is their inability to repre-
sent all real numbers. All numbers not representable are rounded to
their closest representable number. Increasing the floating points bit
depth will decrease the precision error at the cost of computational
resources due to lacking efficient hardware support.

The exponent range in 32-bit floats provides a possible range of
approximately 76 orders of magnitude (OM). Exponents outside
that range will cause exponent underflow or overflow and result in
loss of data. While this range is larger than the 60 OM required
for the known cosmos, problems arise when distances need to be
squared and thus generating numbers in a range of 120 OM.

Due to the limited number of mantissa bits, values are rounded
to be representable as floating point numbers. An upper bound of
the spacing between a floating point number v and adjacent num-
bers is ε|v|, where ε = 2−(n+1) with n as the number of mantissa
bits [Hig02]. For IEEE754 float, ε is 2−24 ≈ 5.96 · 10−8, leading
to a precision of about 7 significant figures in decimal notation.

For computer graphics, this limits the precision with which ver-
tices can be represented. Figure 2 shows a simulation with 5 man-
tissa bits. Using IEEE754 floats, at Pluto’s distance from the Sun
the distance between two floating point numbers is approximately
5.102 · 109 · 2−24 km = 304.1 km, which is about an eighth of
Pluto’s diameter and leads to visible artifacts (see Figure 3).

3.2. Interval arithmetic

The maximum error introduced by rounding of a number v can be
written as u|v|, with the rounding error coefficient u = ε

2 . Hence, v

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Axelsson et al. / Dynamic Scene Graph:Enabling Scaling, Positioning, and Navigation in the Universe

may be rounded to a number v′ ∈ [v−u|v|,v+u|v|]. Using interval
arithmetic [HJVE01], this can be rewritten as v(1+u[−1,1]).

We use ⊕, 	, �, and � to denote floating point addition, sub-
traction, multiplication, and division respectively. The operators are
commutative and yield the possible output intervals given two real
number intervals [x] = [x1,x2] and [y] = [y1,y2] as,

[x]⊕ [y]⊆ ([x]+ [y])(1+u[−1,1])

[x]	 [y]⊆ ([x]− [y])(1+u[−1,1])

[x]� [y]⊆ [x][y](1+u[−1,1])

[x]� [y]⊆ [x]
[y]

(1+u[−1,1])

(1)

For operations involving the degenerate intervals [0,0] = {0} and
[1,1] = {1} it holds that,

[x]�{1}= [x] and [x]⊕{0}= [x] (2)

3.3. Propagation of error intervals

Rounding errors propagate and compound when a result from one
floating point operation is used in further computations. For this
reason, expressions of the form (a+b)−b may evaluate to 0 for a
sufficiently small a 6= 0 and large b; a phenomena known as catas-
trophic cancellation (CC) [CVBK01]. We will show how this im-
pacts any pipeline utilizing matrix multiplications or vector addi-
tions.

Let E be the set of intervals that can be written as cu[−1,1],
where c is a non-negative constant. For any pair of intervals
[e1], [e2] ∈ E, there exist intervals [e3], [e4] ∈ E, such that [e1] +
[e2]⊆ [e3] and [e1][e2]⊆ [e4]. We let [ei] = ciu[−1,1]∈E and con-
sider two intervals a(1+ [e1]) and b(1+ [e2]). First, we study the
effects of floating point multiplication acting on these intervals.

a(1+[e1])�b(1+[e2])

⊆ ab(1+[e1])(1+[e2])(1+u[−1,1])⊆ ab(1+[e3])
(3)

The output interval in Equation 3 has the size |abc3u|, meaning
that the maximum absolute rounding error of floating point mul-
tiplication is proportional to the absolute value of the product ab.
However, the relative rounding error c3u is independent of these
factors. We proceed with the properties of floating point addition.

a(1+[e1])⊕b(1+[e2])

⊆
(
a(1+[e1])+b(1+[e2])

)
(1+u[−1,1])

⊆ a(1+[e4])+b(1+[e5])

(4)

Equation 4 yields a maximum rounding error of |ac4u|+ |bc5u|.
The relative error of the floating point sum depends on the individ-
ual terms’ absolute value. By applying the equation iteratively, we
see that Equation 5 holds regardless of the order of operations, with
∑i[xi] = [x1]⊕ [x2]⊕ ...⊕ [xn] and [xi] = xi(1+[ei]).

∑
i
[xi]⊆∑

i
[xi](1+[e′i]) (5)

Thus, floating point sums will accumulate errors from all con-
tributing terms with the risk for CC if large positive and negative
terms are involved with relatively small expected results.

Given a matrix X with components Xi j and an interval matrix [E]
with components [Ei j], let [XE] denote a matrix with the interval
components Xi j(1+[Ei j]). We use the operator ⊗ to denote matrix
multiplication, in which output components are computed as sums
of products. By combining Equations 3 and 5, we get,

([AE]⊗ [BF])i j ⊆
m

∑
k=1

Aik(1+[ei j])�Bk j(1+[Fk j])

⊆
m

∑
k=1

AikBk j(1+[ei jk])

(6)

with all interval matrix components [Ei j], [Fi j] ∈ E and ei jk ∈ E.
We observe that the maximum floating point error of a component
(AB)i j of a matrix product is given by ∑

m
k=1 |AikBk j[ei jk]|. Using the

special cases from Equation 2, we note that ei jk = 0 if [AE
ik] = {0},

[BF
ik] = {0}, [A

E
ik] = {1} or [BF

ik] = {1}. Depending on the structure
of the matrices A and B, the output component may be subject to
CC.

3.4. Precision-related rendering artifacts

Lack of precision introduces several types of visual artifacts. If er-
rors in the x and y coordinates of the normalized device coordinates
reach or exceed the size of a pixel, a vertex displacement is visible.
If the rounding error of z in the depth buffer is larger than the dif-
ference of two fragments, there is a risk for z-fighting.

In the following sections, we study the implications of the co-
ordinate operations in the graphics pipeline to determine the cir-
cumstances in which precision problems may be introduced. By
studying the effect of transformation matrices acting on coordinate
vectors, we can predict vertex displacement issues and determine
when there is a risk of z-fighting.

Content is commonly organized in a scene graph representing
coordinate transformations hierarchically. Each node in the graph
can contain transformations affecting all children, which means
that the transformation matrices of all ancestor nodes are concate-
nated to a final model matrix. The interval vector [n] of normalized
device coordinates is derived from the model coordinates [x] by

[c] = [P]⊗ [V]⊗ [M]⊗ [x]
[n] = [c]� [cw]

(7)

where [P] is the projection matrix, [V] is the view matrix, [M] is
the model matrix, and [x], [c] and [n] are interval vectors. The error
interval size of the normalized device coordinates depends on the
collective effects of [M], [V], [P], and the perspective division as
they act on [x].

[M] and [V] are composed from three types of transformations:
scaling, translation, and rotation. We study the effects of applying
scaling, translation, and rotation on a generalized interval model
matrix or view matrix [A], composed of a translation vector [a] and a
combined rotation/scaling 3×3-matrix [A′], as given by Equation 8.
Scaling, rotation, and translation matrices can all be written on the
same form as [A]. In order to observe how the matrices act on a

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Axelsson et al. / Dynamic Scene Graph:Enabling Scaling, Positioning, and Navigation in the Universe

coordinate vector, we study the fourth column in [A].

[A] =
(

[A′] [a]
{0} {1}

)
(8)

After evaluating the possible effects of the scaling, translation,
and rotation we similarly analyze the projection matrix, the per-
spective division, and the mapping to a depth buffer representation.

3.4.1. Scaling

Consider a 4×4 interval matrix [S], analogously to the matrix [A]
composed of the 3×3 interval matrix [S′], interval vector [s], and
a bottom row of degenerate intervals. Let the components of [S]
be scaling coefficient intervals, and other components of [S] and [s]
equal the degenerate interval. Equation 9 expresses the components
of the output matrix Ŝ, which is also a matrix of the form of [A].

[Ŝi] = ([S′]⊗ [A′])i j ⊆ [S′ii] [A
′
i j](1+[ei j]) (9)

[ŝi] = ([S′]⊗ [a])i ⊆ [S′ii] [ai](1+[e j]) (10)

The rounding error introduced by an interval scaling matrix [S] is
thus proportional to the size of the scaling factors in [S′]. Any error
interval in [A′] and [a] will be scaled proportionally. Thus, we con-
clude that applying a scaling matrix to a matrix [A] does not cause
a significant loss of relative precision in any matrix component.

3.4.2. Translation

A corresponding analysis is made for translation matrices, com-
posed of [T ′] and [t], with degenerate intervals [T ′i j] = {Ii j}, where
I is the identity matrix. The components of [t] representing a trans-
lation interval vector.

[T̂i j] = ([T ′]⊗ [A′])i j = [A′i j] (11)

[t̂i] = [ti]⊕ [ai]⊆ ([ti]+ [ai])(1+[ei]) (12)

We note that the precision in [T̂i j] is preserved from [A′] when
any translation matrix [T] is applied. However, error intervals in
[ti] and [ai] will propagate to ˆ[t]i, and will not be scaled down even
if |[t̂i]| is much smaller than |[ti]| and |[ai]|. This scenario may lead
to catastrophic cancellation in the component [t̂i].

3.4.3. Rotation

Using a rotation interval matrix [R] composed of the upper left 3×3
matrix [R′] and a upper right 3-dimensional column vector r with
the interval components [R′i j] ⊆ [−1,1], and ri = [0,0], we study
the effect of multiplying [R] with the interval matrix [A]:

[R̂′i j] = ([R′]⊗ [A′])i j ⊆
3

∑
k=1

[R′ik] [A
′
k j](1+[ei jk]) (13)

[r̂i] = ([R′]⊗ [a])i ⊆
3

∑
k=1

[R′ik] [ak](1+[ei jk]) (14)

The potential error of any output component Ai j will be equal to

∑
3
k=1 |[R

′
ik] [A

′
k j][ei jk]|. Given that the intervals in [R] are confined

to [−1,1], we see that the maximum possible precision loss in any
matrix component is dominated by the values of A. When applying
[R] on a matrix or vector with both large and close-to-zero compo-
nents, the precision in the small components may be lost. However,
the loss of precision in the most significant matrix components will
be minimal. This means that when using [R] to transform the co-
ordinate vector [a] = ([x], [y], [z])t ⊆ [â][|a|], neither the precision
of the direction [â] nor the magnitude [|a|] will be affected signifi-
cantly. The same is true for the column vectors in [A′], which means
that the significant properties of [A′] are preserved in [R̂′].

3.4.4. Perspective and depth

When a perspective matrix P is multiplied with a homogeneous
view coordinate vector v= (x,y,z,1)t , the sums of products to com-
pute the output x, y, and w components will only consist of one non-
zero term. Hence, there is no significant loss of relative precision
in these components.

Furthermore, while the perspective division shrinks the projected
image of distant objects, this also has the effect of scaling down any
precision errors in distant vertex coordinates. Hence, the sensitivity
of visible vertex displacement of a vertex is inversely proportional
to the distance of the vertex in view space.

The z-component in clip space cz = (Pv)z is given by Equa-
tion 15, where pn and p f are the distance from the camera to the
near and far plane respectively.

λ1 =−
p f + pn

p f − pn
, λ2 =

2p f pn

p f − pn
, [cz] = [λ1]⊗ [vz]⊕λ2 (15)

The result is an affine mapping of depths such that vertices in the
near plane yield cz = 0 and vertices in the far plane give cz = cw.
Subsequently, the perspective division maps [nz] into the range
[0,1]. If an integer depth buffer is used, this non-linear mapping
results in a higher depth resolution for close objects than for distant
ones. Setting pn to a small number may cause distant vertices to
collapse to the same depth buffer value and cause z-fighting.

The problems of depth buffer precision are well known and
have been subject to thorough analysis [CR11]. Upchurch and Des-
brun [UD12] show that good depth resolution can be maintained
even with a far plane placed in ∞. However, precision problems
for distant objects remain an issue for small pn.

4. Dynamic Scene Graph Method

The need for accurate, effective and seamless positioning and nav-
igation, together with the analysis of precision inaccuracies de-
scribed above, form the basis for our proposed Dynamic Scene
Graph (DSG) that enables high-fidelity rendering at any point in
the scene graph independent of the location of the global coordi-
nate system origin. This is achieved by utilizing a dynamic camera
attachment and a relative scene traversal performed with respect to
a camera’s attachment node (AN). The AN is a regular scene graph
node with no other special characteristics and is updated accord-
ingly when the camera moves. The initial attachment node for each

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Axelsson et al. / Dynamic Scene Graph:Enabling Scaling, Positioning, and Navigation in the Universe

B

B

A

A

1

1

4

3

5

2

1

4

3

5

2

3

2

4

5

Figure 4: A potential scene graph consisting of two translation
nodes for the solar system and the Earth system (1,3) and three
rendering nodes for the Sun (2), Earth (4), and the Moon (5).
Cameras (A, B) can be attached to different nodes, thus avoiding
the introduction of large, error-prone translation values. (a) shows
the nodes relative location, whereas (b) shows their organization in
a graph. The arrows represent local upwards (red) and downwards
(blue) transformations.

camera is determined by specifying the node and a position in its
local coordinate system.

The DSG is based on a traditional scene graph structure, but in-
stead of a regular depth-first traversal order that starts at the root
node of the graph, we propose a traversal order that starts at the AN
and can traverse both upwards and downwards. Each node in the
scene graph can contain a transformation, consisting of a transla-
tion, rotation, and scaling that are all described relative to a node’s
parent and must be invertible, which is possible for all transforma-
tion matrices. In addition, nodes may contain a visual object rep-
resentation, for example a planet or a spacecraft, specified in the
node’s own local coordinate system. If a scene graph node contains
a visible object, we refer to it as a rendering node, otherwise it is
a transformation node. Unlike traditional scene graphs, each scene
graph node has a radial extent, which determines the node’s sphere

of influence. Each scene graph node’s extent has to be bigger than
all its children’s spheres of influence.

Figure 4 shows a possible scene graph with 5 nodes and their ex-
tents; (1, 3) are transformation nodes centered on the solar system
and the Earth barycenter respectively, (2, 4, 5) are rendering nodes
containing the Sun, the Earth, and the Moon. Two cameras (A, B)
are attached to the scene at different attachment nodes.

First, we describe the relative scene traversal assuming a static
camera, then describe the attachment changes of moving cameras.

4.1. Dynamic Scene Graph Traversal

As described in the previous section, the camera is attached to a
specific node N in the scene graph. Rendering, or otherwise access-
ing, the contents of the scene graph requires a traversal, which in a
traditional scene graph starts at the root node and traverses through
the child nodes. In our method, this traversal starts at the attached
node N instead, with the ability of moving up and down in the scene
graph and inverting the relative transformations if necessary.

The traversal of the scene graph works as follows: For each scene
graph node M, the shortest path between M and the currently at-
tached node N is computed in the graph. Figure 4 (b) shows two ex-
amples of this with the camera being attached to node 3 and node 5
respectively. For each step along this path, the transformation ma-
trices are concatenated. If the transition is performed downwards
towards the leaf nodes (blue arrows in Figure 4 (b)), the trans-
formation matrices are concatenated analogous to traditional scene
graphs. If the transition is performed up towards the root node of
the graph (red arrows in Figure 4 (b)), the transformation is in-
verted before concatenated. As an example we use the scene graph
depicted in Figure 4 (b). vi, j is the transformation from node i to j
and v j,i =−vi, j is the inverse. vi,i specifies the local transformation
used by the node i. For camera A, the rendering of the Sun (node
2) is performed using the transformations v2,1 · v1,3 · v3,3. The ren-
dering of the Earth (node 4) however, is performed only with the
translation v4,3 · v3,3, ignoring all other scene graph nodes and thus
not affected by their values. For camera B, the transformation for
the Sun is v2,1 · v1,3 · v3,5 · v5,5 and for the Earth v4,3 · v3,5 · v5,5.

First, this means that when different cameras are present in the
scene graph, each camera might have its own traversal path. More
importantly, for two nodes N and M only the subtree with the clos-
est common parent at the root needs to be traversed in order to
retrieve all information necessary to transform M into the local co-
ordinate system of N and vice versa. Without including the root
node in every traversal, the location of the local subtree does not
have an impact on the precision of the objects contained within,
thus evading the potential of catastrophic cancellation as discussed
in Section 3.4.2. This fact lies at the core of our proposed method as
it leads to a high-precision rendering independent of the location of
the nodes within the extended scene graph. By utilizing the shortest
path between M and N we avoid the large translations which would
otherwise be necessary if all the transformations originate from the
root node and which would lead to precision problems.

This technique enables the highest precision for the node N with
precision decreasing for growing distances from the center of N. As

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Axelsson et al. / Dynamic Scene Graph:Enabling Scaling, Positioning, and Navigation in the Universe

B N

M

A N

M

Figure 5: When the camera reattaches to a node, its coordinate
system changes. While the old location A is expressed relative to N
as v, the new location B is expressed relative to M as w− n instead.

described in Section 3, the representable precision decreases with
increasing numbers, such that small details in large objects with
great distances would become prone to precision error. However,
projected changes that are smaller than a fraction of a pixel will not
be visible. Therefore, our method only loses precision in the areas
where high precision is not required.

Conceptually, our method pivots the scene graph such that the
node N is placed at the root, all necessary transformation inver-
sions are performed, and a traditional traversal algorithm is used.
Since inversion of scaling, rotation and translation matrices are in-
expensive and usually already a part of scene graph based rendering
pipelines, there is little to no performance implication associated
with the proposed traversal scheme.

4.2. Dynamic camera attachment

In our scene graph, a camera is always attached to a single node, the
AN, and the camera’s position and orientation is expressed in AN’s
local coordinate system. At all times, the AN is the deepest node in
the scene graph whose sphere of influence fully encompasses the
camera position. In Figure 4 camera A is located in nodes 1 and 3,
and is thus attached to node 3. Likewise, camera B is inside nodes
1, 3 and 5 and is thus attached to node 5.

Figure 6 shows an example of the dynamic camera attachment
in a flight from the surface of Earth to Saturn’s moon Titan. The
camera changes its AN four times on this transition.

There are two cases for updating a camera’s AN in response to
a user’s interaction. If a camera enters the sphere of influence of a
current AN’s child, that child is the new AN — the camera moves
down the scene graph. If the camera leaves the sphere of influence
of the current AN, the AN’s parent is the new AN — the camera
moves up the scene graph. At each step, the distances of the cam-
era to the AN center and the distances to all children are computed
and specified relative to the AN as opposed to specifying the val-
ues relative to the global coordinate system origin defined by the
root node. This circumvents the risk of catastrophic cancellation by
ensuring that unnecessarily large vectors are not included.

In both transition cases, the location of the camera must change

reference frames. Figure 5 shows a camera’s old (A) and new (B)
location before and after an AN change. A is expressed relative to
N by the vector v, whereas B is expressed relative to M as the vector
w. The old and new locations are related by w = v+ n. To allow
for this remapping to be computed without precision problems, ex-
tents of the scene graph nodes must be chosen such that the ratio
between the child’s and parent’s extent is significantly larger than
the machine epsilon. In order to circumvent rounding errors related
to translation as described in Section 3.4.2, extents are chosen such
that the camera attaches to a child render node before the details of
the rendering become visible.

Similarly to the translation, the scaling and rotation of the cam-
era has to be inverted by applying the inverse of the rotation of N
towards M. As stated in Section 3.4.1 and Section 3.4.3 no signifi-
cant precision error with the scaling and rotation will occur.

The update procedure is computationally inexpensive and scales
linearly with the number of children of the current AN as only these
need to be tested for reattachment. Hence, there are no significant
performance implications associated with this operation.

4.3. Dynamic object attachment

Analogous to the dynamic camera attachment, where the camera
can be reattached to children or parent nodes, the same technique
is also useful for scene graph nodes or entire sub trees. In a tradi-
tional scene graph, reattachment is not a useful feature as no pre-
cision is gained by moving a subtree at runtime. In our method
however, it is beneficial when dealing with dynamic astronomical
objects, such as spacecraft, asteroids, or comets, that can approach
several objects of the scene graph at different times. One example is
the New Horizons mission [Ste09], where the spacecraft launched
from Earth and approached both Jupiter and Pluto. For this visual-
ization, it is necessary to render the spacecraft at high resolution on
the launchpad in Florida, in interplanetary space, during the grav-
ity assist at Jupiter, on the flyby at Pluto, and eventually at its next
flyby at 2014 MU69. If the scene graph node containing New Hori-
zons would statically be a direct child of the solar system, floating
point precision would not suffice for accurately representing the
probe at these various locations. In Figure 1, the New Horizons
spacecraft scene graph node has been dynamically attached to the
Pluto barycenter node, in order to allow simultaneous high fidelity
rendering of the probe as well as the planetary system.

4.4. Representation of depth

In our approach, we use a modified perspective matrix with λ1 =
λ2 = 0, yielding zc = 0 for all vertices, thus effectively disabling
the near and far planes. Geometry behind the camera is discarded
due to the criterion of−cw < cw imposed by the OpenGL pipeline.
For depth comparisons, we use 32-bit floating point numbers rep-
resenting the distance to the rendered fragment.

To avoid exponent overflow and underflow for distant and close
fragments, we first divide the view coordinate vector v by its com-
ponent with largest magnitude vmax, perform the computation using
the pythagorean theorem, and multiply by vmax.

Depth sorting is performed using conventional z-buffering with

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Axelsson et al. / Dynamic Scene Graph:Enabling Scaling, Positioning, and Navigation in the Universe

(a) Surface of the Earth (b) Earth from orbit (c) Saturnian sphere of influence

(d) Titan with Saturn in the background (e) Surface of Titan
Earth

Saturn
barycenter

Earth
barycenter

Solar system
barycenter

Saturn Titan

...

... ...

(f) Scene Graph Representation

Figure 6: A journey of 1.65 billion km as sequence of images of a flight started on Earth’s surface (a), showing Earth from the view of
geostationary satellites (b), entering the Saturnian system (c), entering Titan’s sphere of influence (d), and approaching Titan (e). Figure (f)
shows the accompanying scene graph structure and and which locations the individual images were taken.

a 32-bit floating point buffer. For scenes with volumetric or trans-
parent content, we use an A-buffer technique for order-independent
transparency [LFS∗15]. When using ray casting for volumetric ren-
dering, the distance taken along the ray is compared to the distance
of rendered geometry in order to perform early ray termination.

By always rendering objects in their physical location, as op-
posed to the reprojection of objects performed in the ScaleGraph
approach, our method handles stereoscopic rendering.

5. Results

The Dynamic Scene Graph approach has been deployed in sev-
eral use case scenarios exemplifying the utility of the approach. We
have here chosen to provide some selected examples with corre-

Figure 7: A rendering of Pluto’s surface with a height field recon-
structed from New Horizons’ images showing the Zheng He Montes
and al-Idrisi Montes in front of Tombaugh Regio.

sponding rendered images showing: dynamic objects, scaled nav-
igation, globe browsing, and contextualization of scientific simu-
lations. The DSG has been integrated into the OpenSpace soft-
ware framework [BMK∗15], which is targeting science commu-
nication events in immersive environments, such as dome theaters
and planetariums. The implementation has enabled seamless navi-
gation and accurate rendering in OpenSpace, without any measur-
able performance impact when compared to rendering with a static
scene graph based on PSC as shown in Figure 3. The images shown
are captures from interactive sessions using OpenSpace. While the
use-cases in this section are dealing with astronomical datasets, our
proposed method equally applies to other domains with large scale
differences, such as molecular visualization or atomic visualiza-
tion. In this section, we shortly describe these use-cases and how
our proposed method was used in four categories.

Spacecraft. As one of the major motivations for developing this
method, spacecraft are inherently small objects that need to be vi-
sualized precisely with respect to an object, mostly planets, that
they are inspecting. One example is shown in Figure 1 where the
New Horizons spacecraft is shown at 80 Mm distance to Pluto and
around 6 · 1012 m away from the Sun. As described in Section 3.1,
floating point numbers only have a precision of about 300 km at the
distance of Pluto, which would make a traditional approach infea-
sible. With our method, however, it is possible to show the entire
mission with the required precision. A second spacecraft is ESA’s
Rosetta shown in Figure 10 as a stereoscopic rendering of the sep-
aration of the lander Philae from Rosetta on its way to the comet.

Navigation. Figure 6 shows frames of a seamless navigation
through our solar system. Starting on the surface of Earth, where
the Alps are rendered with their correct height and surface textures,

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Axelsson et al. / Dynamic Scene Graph:Enabling Scaling, Positioning, and Navigation in the Universe

Figure 8: Details of structures with up to 25 cm per pixel resolution
in a rendering of the surface features in West Candor Chasma on
Mars as captured from the HiRISE camera.

the Earth becomes visible further out before reaching the sphere of
influence of Saturn and continuing to the surface of Titan, showing
color images of the moon’s surface. At no point during this 1.65
billion km user-controlled journey are artifacts visible due to the
camera’s seamless transitions between the scene graph nodes.

Virtual globes. High resolution surface features are a big chal-
lenge when representing an entire solar system in a single scene
graph. In addition to requiring a level of detail scheme to support
dynamic loading of terrain data into the graphics memory, coor-
dinate precision also needs to be maintained across the whole vi-
sualization pipeline. Individual surface features are much smaller
than the available floating point precision for any planet. With our
method however, we can produce an accurate rendering of the lat-
est composite images and height maps on Pluto [SBE∗15] with a
resolution of between 2 and 5 km/pixel (see Figure 7). Figure 8
shows detailed structures on the surface of Mars as returned from
the Mars Reconnaissance Orbiter’s HiRISE camera [MEB∗07]. It
shows details with a resolution of 25 cm per pixel.

Volumetric data. As described in Section 4.4, our system enables
the seamless integration of volumetric data. Figure 9 shows a frame
of a three-channel time-varying volumetric rendering of the Milky
Way [JTK10, FBS∗11]. In this scene, the center of the Milky Way
is the root node of the scene graph and the solar system are at a
distance of 2,5 ·1020 from the center inside the volume’s bounding
box of ≈ 1021×1021×1.5 ·1019 m. The volume is rendered using
ray casting, with its proxy geometry defined as a sibling node to our
solar system, sharing a Milky Way group node as common parent.
This means that only the transformations of the bounding box ver-
tices have to be adjusted in order to incorporate volume rendering.

Figure 9: A volumetric rendering of a three-channel simulation of
the Milky Way with a bounding box size in the order of 1020 m.

Figure 10: Our approach supports stereoscopic rendering (here,
amber/blue anaglyph) exemplified with the Rosetta/Philae separa-
tion for the landing on the comet 67P/Churyumov-Gerasimenko.

6. Conclusions

In this work, we presented a method that supports high-precision
transformations in a scene graph by dynamically attaching a cam-
era to its closest node and using this node as the origin for the
scene traversal. The dynamic scene graph enables a higher level
of relative precision than which is otherwise possible. By support-
ing efficient dynamic reattachment of the camera to nodes, it be-
comes possible to navigate a scene encompassing scales and dis-
tances much larger than floating point precision would normally
permit. The same reattachment technique can be applied to provide
other scene graph nodes with the ability to retain high precision
at multiple locations, for example, a spacecraft that requires high
precision at multiple planets as it moves through space. The scene
graph traversal uses the shortest path to every other scene graph
node and thus circumvents potentially large translation values that
would otherwise lead to precision degradation during the rendering.

We implemented the method in the open-source software plat-
form OpenSpace which has the goal of visualizing and contextu-
alizing a wide range of astrophysical data. The method was suc-
cessfully tested on spacecraft mission visualization [BMK∗15], on
virtual globes, and volumetric rendering. The method is flexible
enough, however, to be implemented and used in any scene graph
implementation through modification of the traversal scheme.

6.1. Future Work

For future work, we like to include high-level wayfinding tech-
niques such as the ones explored in Li et al. [LFH06] and gener-
alize these to macro and microcosmos scenarios. For time-varying
datasets, a large spatial extent usually corresponds to a large tempo-
ral extent as well, the handling of which requires further research.
Furthermore, combining datasets of vast spatial domains opens up
new challenges in the design of interaction techniques.

7. Acknowledgments

We would like to acknowledge the Swedish e-Science Research
Center (SeRC) for their support of this work. Parts of this work
were supported by NASA under award No NNX16AB93A, the
Moore-Sloan Data Science Environment at NYU, NSF awards
CNS-1229185, CCF-1533564, and CNS-1544753. We would also
like to thank Karl Bladin and Erik Broberg for their work on the
planetary renderer and ESRI for providing the Earth data. Addi-
tional thanks to Karljohan Lundin Palmerius and Patric Ljung for
proofreading and giving insightful feedback.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Axelsson et al. / Dynamic Scene Graph:Enabling Scaling, Positioning, and Navigation in the Universe

References
[Abb06] ABBOTT B.: The digital universe guide for partiview, 2006. 2

[BMK∗15] BOCK A., MARCINKOWSKI M., KILBY J., EMMART C.,
YNNERMAN A.: Openspace: Public dissemination of space mission pro-
files. 2015 IEEE Scientific Visualization Conference (SciVis) (Oct 2015).
doi:10.1109/scivis.2015.7429503. 8, 9

[CR11] COZZI P., RING K.: 3D engine design for virtual globes. CRC
Press, 2011. 5

[CVBK01] CUYT A., VERDONK B., BECUWE S., KUTERNA P.: A re-
markable example of catastrophic cancellation unraveled. Computing
66, 3 (May 2001), 309–320. doi:10.1007/s006070170028. 4

[EE77] EAMES C., EAMES R.: Powers of Ten. IBM, 1977. 2

[Eva16] EVANS & SUTHERLAND: Digistar, 2016. URL: http://
www.es.com/Digistar/. 2

[FBS∗11] FUJII M., BABA J., SAITOH T., MAKINO J., KOKUBO E.,
WADA K.: The dynamics of spiral arms in pure stellar disks. The Astro-
physical Journal 730, 2 (2011), 109. 9

[FH07] FU C.-W., HANSON A. J.: A transparently scalable visualization
architecture for exploring the universe. IEEE Transactions on Visualiza-
tion and Computer Graphics 13, 1 (2007), 108–121. 3

[FHW06] FU C.-W., HANSON A. J., WERNERT E. A.: Navigation tech-
niques for large-scale astronomical exploration. In Electronic Imaging
2006 (2006), International Society for Optics and Photonics. 2

[Git] GITHUB:. OpenSpace Repository [online]. URL: https://
www.github.com/OpenSpace/OpenSpace.git. 2

[HFW00] HANSON A. J., FU C.-W., WERNERT E. A.: Very large scale
visualization methods for astrophysical data. In Data Visualization 2000.
Springer, 2000, pp. 115–124. 2

[Hig02] HIGHAM N. J.: Accuracy and stability of numerical algorithms,
2 ed. Siam, 2002, p. 37. 3

[HJVE01] HICKEY T., JU Q., VAN EMDEN M. H.: Interval arith-
metic: From principles to implementation. Journal of the ACM 48, 5
(Sep 2001), 1038–1068. URL: http://dx.doi.org/10.1145/
502102.502106, doi:10.1145/502102.502106. 4

[JTK10] JUNICHI B., TAKAYUKI R. S., KEIICHI W.: On the interpre-
tation of the l–v features in the milky way galaxy. Publications of the
Astronomical Society of Japan 62, 6 (2010), 1413–1422. 9

[KHE∗10] KLASHED S., HEMINGSSON P., EMMART C., COOPER M.,
YNNERMAN A.: Uniview - Visualizing the Universe. In Eurographics -
Areas Papers (2010), Eurographics Association. 2, 3

[LAE∗01] LIU C. T., ABBOTT B., EMMART C., MAC LOW M.-M.,
SHARA M., SUMMERS F. J., TYSON N. D.: 3-d visualizations of mas-
sive astronomy datasets with a digital dome. In Virtual Observatories of
the Future (2001), vol. 225, p. 188. 2

[LFH06] LI Y., FU C.-W., HANSON A.: Scalable wim: Effective explo-
ration in large-scale astrophysical environments. IEEE Transactions on
Visualization and Computer Graphics 12, 5 (2006), 1005–1012. 2, 9

[LFS∗15] LINDHOLM S., FALK M., SUNDÉN E., BOCK A., YNNER-
MAN A., ROPINSKI T.: Hybrid data visualization based on depth com-
plexity histogram analysis. In Computer Graphics Forum (2015), vol. 34,
Wiley Online Library, pp. 74–85. 8

[Lue03] LUEBKE D. P.: Level of detail for 3D graphics. Morgan Kauf-
mann, 2003. 3

[MEB∗07] MCEWEN A. S., ELIASON E. M., BERGSTROM J. W.,
BRIDGES N. T., HANSEN C. J., DELAMERE W. A., GRANT J. A.,
GULICK V. C., HERKENHOFF K. E., KESZTHELYI L., ET AL.: Mars
reconnaissance orbiter’s high resolution imaging science experiment
(HiRISE). Journal of Geophysical Research: Planets 112, E5 (2007).
9

[MSK∗10] MAGNOR M., SEN P., KNISS J., ANGEL E., WENGER S.:
Progress in rendering and modeling for digital planetariums. Proc. Eu-
rographics Area Papers (2010), 1–8. 2

[NPH∗09] NAKASONE A., PRENDINGER H., HOLLAND S., HUT P.,
MAKINO J., MIURA K.: Astrosim: collaborative visualization of an
astrophysics simulation in second life. IEEE Computer Graphics and
Applications 29, 5 (2009), 69–81. 2

[SBE∗15] STERN S., BAGENAL F., ENNICO K., GLADSTONE G.,
GRUNDY W., MCKINNON W., MOORE J., OLKIN C., SPENCER J.,
WEAVER H., ET AL.: The pluto system: Initial results from its explo-
ration by new horizons. Science 350, 6258 (2015). 9

[Sky16] SKY-SKAN INC.: Digitalsky 2, 2016. URL: http://www.
skyskan.com/products/ds. 2

[Ste09] STERN S. A.: The new horizons pluto kuiper belt mission: An
overview with historical context. In New Horizons. Springer, 2009,
pp. 3–21. 7

[UD12] UPCHURCH P., DESBRUN M.: Tightening the precision of per-
spective rendering. Journal of Graphics Tools 16, 1 (2012), 40–56. 5

[ZCA∗08] ZURAS D., COWLISHAW M., AIKEN A., APPLEGATE M.,
BAILEY D., BASS S., BHANDARKAR D., BHAT M., BINDEL D.,
BOLDO S., ET AL.: IEEE standard for floating-point arithmetic. IEEE
Std 754-2008 (2008), 1–70. 3

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

http://dx.doi.org/10.1109/scivis.2015.7429503
http://dx.doi.org/10.1007/s006070170028
http://www.es.com/Digistar/
http://www.es.com/Digistar/
https://www.github.com/OpenSpace/OpenSpace.git
https://www.github.com/OpenSpace/OpenSpace.git
http://dx.doi.org/10.1145/502102.502106
http://dx.doi.org/10.1145/502102.502106
http://dx.doi.org/10.1145/502102.502106
http://www.skyskan.com/products/ds
http://www.skyskan.com/products/ds

